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Abstract—As robots increase in agility and encounter fast-
moving objects, dynamic object detection and avoidance become
notably challenging. Traditional RGB cameras, burdened by
motion blur and high latency, often act as the bottleneck. Event
cameras have recently emerged as a promising solution for the
challenges related to rapid movement. In this paper, we introduce
a dynamic object avoidance framework that integrates both event
and RGBD cameras. Specifically, this framework first estimates
and compensates for the event’s motion to detect dynamic objects.
Subsequently, depth data is combined to derive a 3D trajectory.
When initiating from a static state, the robot adjusts its height
based on the predicted collision point to avoid the dynamic
obstacle. Through real-world experiments with the Mini-Cheetah,
our approach successfully circumvents dynamic objects at speeds
up to 5m/s, achieving an 83% success rate.

Supplemental video: https://youtu.be/wEPvynkVlLA

I. INTRODUCTION

Recent progress in artificial intelligence, robot control, com-
puter vision, and computing power advanced the perception-
based collision avoidance capability of robotic systems [1]–
[6]. Nonetheless, recognizing and avoiding highly dynamic ob-
jects (e.g., a high-speed car, kicked ball) remains an unsolved
challenge because of the inherent limitations of conventional
cameras. For example, RGB cameras’ low temporal resolution
and dynamic range make it difficult to capture rapid objects
unless the bright and consistent light condition is secured.
Such constraints hinder the robot’s ability to swiftly respond
to rapidly moving objects, thus posing significant obstacles to
safe navigation.

Event cameras, referred to as neuromorphic cameras, have
been recently introduced as a promising solution to address
aforementioned challenges [7] [8]. In contrast to conventional
shutter-based cameras that capture entire images at a regular
frame rate, event cameras asynchronously detect local bright-
ness changes at the pixel level. By capturing distinct local
events, the event camera offers benefits like high dynamic
range, minimal latency, energy efficiency, and superior motion
blur mitigation [9]. In this work, we leverage the capabilities of
event-based neuromorphic cameras to differentiate a dynamic
object from a static scene. Furthermore, we capitalize on the
event camera’s high-temporal resolution attribute to avoid a
fast-moving object with our quadruped system.

While event cameras offer numerous advantages, their data
often exhibits higher noise levels and is captured at a rela-
tively low resolution compared to the dense pixel information
provided by frame-based cameras. Another aspect to note
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Fig. 1. Event and depth sensor-equipped robot avoiding a dynamic object.

is that event data is motion-dependent; edges parallel with
motion usually do not generate events, as these events arise
solely from brightness changes caused by the camera’s relative
motion. Moreover, event cameras solely capture changes in
brightness, omitting visual details such as color and texture.
Given the fundamental differences in sensing mechanisms
between RGB and event cameras, directly applying RGB
image-based object avoidance algorithms to event data is not
feasible.

The methodology of leveraging motion to refine event data
and compute pixel-specific metrics has been explored by
numerous researchers. Mitrokhin et al. [10] incorporated x-
shift, y-shift, expansion, and 2D rotation into their motion
compensation. Falanga et al. [11] managed to reduce the
latency to 3.5ms by leveraging the rotational data from an
IMU, though they didn’t account for translational motion. He
et al. [12] filled this gap, compensating for both rotational and
translational movements and deploying an adaptive threshold
driven by angular and linear velocities. However, these ap-
proaches share the same drawback: their detection results tend
to be either noisy or incomplete. This challenge arises from
relying on a single threshold: while a higher value curtails
noise, it may omit crucial detection areas, and a lower value
can introduce excessive noise (Fig. 3). Thus, the introduction
of a dual-threshold detection method stands out as a promising
solution for refining results.

In this paper, we divide the dynamic object detection
algorithm into two scenarios to accommodate the event cam-
era’s distinct sensing mechanisms. (1) In situations of static
robot motion, the event camera’s motion-dependent mecha-
nism exclusively captures event data associated with dynamic
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Fig. 2. Overall pipeline: Our proposed method consists of (a) Ego motion estimation and compensation, (b) dynamic object detection, (c) 3D trajectory
prediction, and (d) robot control.

objects, thereby automatically filtering out the background.
(2) Conversely, during dynamic robot motion, events are
not just triggered by dynamic objects but also by the static
background, necessitating motion compensation to accurately
detect dynamic objects.

Our objective is to develop a system that not only detects
objects but also predicts their trajectories and avoids them
deftly. Given time constraints, we harness the capabilities of
event cameras to showcase avoidance capability in the first
scenario. We additionally present the detection result under
camera motion and anticipate conducting more comprehensive
experiments in the future.

Our contributions are outlined as follows: Firstly, we de-
vised an object avoidance framework that combines the ca-
pabilities of event and depth cameras to accomplish swift
and robust dynamic object avoidance. Secondly, we conducted
evaluations on a quadruped robotic platform to validate the
effectiveness of our proposed system. Our results highlight
the system’s proficiency in avoiding high-speed objects, rep-
resenting a substantial advancement towards agile navigation
in legged robots. Thirdly, we presented dynamic object de-
tection results that surpass the performance of current leading
detection algorithms.

II. METHOD

The framework comprises four key components illustrated
in Fig. 2. Firstly, we calibrate intrinsic and extrinsic parameters
and synchronize the cameras to guarantee optimal detection
outcomes. Then, we utilize our previous work [13] to esti-
mate ego-motion and compensate event data. Subsequently, a
detection algorithm is applied to obtain 2D object positions
within the pixel frame. By integrating the 2D positions with
depth data, we can obtain 3D positions. Leveraging these 3D
positions, the 3D trajectory prediction module calculates the
object’s trajectory and predicts its future collision point. This
prediction facilitates the system in determining the optimal
height for the robot. Finally, the robot control algorithm
executes the appropriate high-level command by precisely
controlling the positions of the robot’s joints.

A. Dynamic Object Detection

Our detection methodology leverages the capabilities of
event cameras while complementing them with depth data.
This integration enhances the precision of 3D dynamic object
detection, which is foundational for subsequent trajectory
prediction and avoidance. Our detection process falls into two
categories. In situations where the robot remains stationary,
only moving objects stimulate event data. We then employ a
filtering and clustering technique to fine-tune the 2D detection
outcome. In scenarios where the robot is moving, motion
compensation is required. These two categories can be dis-
tinguished by the motion of the event camera.

1) Motion Compensation: As the operation of event cam-
eras is intricately tied to motion, our initial step involves
the estimation of ego-motion to rectify and align the data
generated by the event camera. This correction process is vital
to ensure that subsequent detection accurately distinguishes the
static and dynamic objects. In this work, 6 Degrees of Freedom
(DoF) ego-motion is estimated based on [13]. Specifically,
by integrating RGBD and event data, we formulate a direct
method-based SLAM algorithm for 6 DoF pose estimation.
Upon obtaining the pose, we project events from a 5ms period
to the current timestamp in preparation for the subsequent
detection module. The motion compensation is done with the
following equations:

e′k = K T t
k K

−1ek : ek ∈ Et−5ms, t (1)

where ek is normalized event data within 5ms time window,
e′k is the projected event data at timestamp t, K is the intrinsic
parameters, and T t

k is the interpolated transformation that takes
event data’s position from timestamp k to timestamp t.

2) Detection: Inspired by [11], we define the time-image as
T . Hence, Ti,j represents the timestamp information at pixel
(i, j), which can be defined as the following equation:

Ti,j =
∑

(et − t0)

Ii,j ∗ (t1 − t0)
: et ∈ Ei,j (2)

where Ei,j represents all the events that are projected onto
pixel (i, j). Ii,j is the number of events that are projected
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Fig. 3. Detection result comparison. The first column is the grayscale images
from the RGBD camera, and dynamic objects are highlighted in red. The
second column is the detection result from our method. The third and fourth
columns are the detection results from [11] with a high and low threshold,
respectively. Note that the first column of the RGB camera has a wider field
of view than other columns from the event camera.

onto pixel (i, j). t0 and t1 are the begin and end timestamps
of the event period E.

The given equation calculates pixel statistics within the
range of 0 to 1. Dynamic objects typically approach 1.
Selecting an appropriate threshold to differentiate pixels tied
to dynamic objects can be intricate. A higher threshold will
yield fewer detected pixels (third column in Fig. 3), while
a lower threshold can introduce significant detection noise
(fourth column in Fig. 3). To address this, we initiate with
a mean filtering on Ti,j to minimize noise. Subsequently, we
apply a comparatively high threshold to pinpoint potential
regions for dynamic object detection (Eq. 3). We then adjust
the threshold to be lower, ensuring enhanced detection results
(Eq. 4). A comparative analysis between our method and the
one from [11] is illustrated in Fig. 3.

Ri,j = 1 : Ti,j > thh (3)

Di+x,j+y = 1 : Ti+x,j+y > thl

i, j ∈ Ri,j x, y ∈ [−10, 10]
(4)

where thh represents the higher threshold, thl represents the
lower threshold. R is the region of interest and D is the
detection results. x, y are from the window around the regions
of interest.

Upon obtaining the 2D detection outcome, we advance to
determine the 3D location of the dynamic object, leverag-
ing the capabilities of depth data at timestamp t. This 3D
data is subsequently transformed from the camera’s frame to
the robot’s frame. Conclusively, the derived 3D location is
published via Lightweight Communications and Marshalling
(LCM), making it accessible for the subsequent trajectory
prediction module to utilize.

B. Trajectory Prediction

In this paper, we assume the robot initiates from a static
position and encounters a singular dynamic object within its

Fig. 4. Trajectory prediction and collision check.

Fig. 5. Illustration of the coordinates frames and division of collision where
to determine robot’s motion direction.

field of view. To compute the trajectory, we collect two de-
tection results and apply a naive collision check by projecting
the two detection outcomes onto the x-y plane in the world
frame. Within this plane, the trajectory estimated by the two
detection results appears as a straight line, and the robot is
represented as a circle. Leveraging the formula to calculate
the minimum distance from the center of a circle to a line, we
establish a collision criterion, as articulated in Eq. 5.

R ≥ ax+ by + c√
a2 + b2

(5)

where R is the robot’s radius and ax+ by+ c = 0 defines the
object’s trajectory in the x-y plane.

We gather a set of five detection results and compute the
object’s mean velocity using filtered data points if a potential
collision is predicted. These filtered detection outcomes are
then projected onto the y-z plane in the world frame. Utilizing
a fourth-order polynomial equation derived from the 2D plane,
we accurately pinpoint the potential collision point within the
y-z plane. The point of the collision is illustrated in Fig. 5.
Projecting the object’s 3D trajectory onto the 2D plane serves
as an efficient preliminary step for quickly eliminating non-
collision scenarios. This strategy also allows us to forecast the
dynamic object’s position as it approaches the robot, offering
valuable insights into the collision time and collision location.



TABLE I
DYNAMIC OBJECT AVOIDANCE EXPERIMENT RESULTS

No. of Trial No. of Success Success Rate
Object from air 13 11 0.85

Object from ground 11 9 0.82
Total 24 20 0.83

C. Control

The control policy is based on the collision position within
the collision circle. As depicted in Fig. 5, if the collision point
falls in the circle’s upper half, the robot decreases its height
to evade the dynamic object. Conversely, if it’s in the lower
half, the robot raises its height to sidestep the obstacle. In
this paper, we have prioritized height adjustment as the robot
can change its height more rapidly than moving left or right.
The decision is subsequently communicated to the low-level
whole-body controller to adjust the robot’s height.

III. EXPERIMENT

A. Setup

We evaluate the proposed algorithm on the Mini-Cheetah,
assessing its capability to evade dynamic objects in both aerial
and ground scenarios. Event and depth cameras are placed atop
the robot. A visual representation is provided in Fig 5.

B. Result

As illustrated in Fig. 3, our detection strategy adopts a
high threshold to identify regions of interest and a lower
threshold to capture detailed detections. This approach not
only surpasses the detection results from [11] with a high
threshold (third column in Fig. 3) but also ensures minimal
noise, unlike the results in the fourth column. It is worth
highlighting that a thin string is tethered to the ball. In the
first and second cases, our method adeptly identifies this string
yet struggles in the third row. This detection challenge for the
third case arises since the string’s color closely matches the
background, which will not trigger event data.

We conduct a series of ball-throwing experiments with the
robot in a stationary position. Our primary aim is to validate
the proficiency of our detection, trajectory prediction, and
control modules within an indoor dynamic object avoidance
setting. Notably, there is no preliminary information about the
dynamic objects. These dynamic objects move at speeds of
up to 5 meters and are launched from a distance of 8 meters
from the robot. As shown in Table I, in the airborne trials,
the robot successfully avoided the incoming ball in 11 of the
13 attempts, achieving an 85% success rate. In contrast, for
the ground-based scenarios, the robot managed to successfully
evade in 9 of the 11 tests, attaining an 82% success rate.
Aggregating the results, the robot demonstrated an overall
success rate of 83%. These results underscore the robustness
of our algorithm in equipping the robot to proficiently avoid
dynamic objects across two situations.

IV. CONCLUSION AND DISCUSSION

Our research introduces a comprehensive strategy leverag-
ing event and depth data from a legged system to detect and
avoid dynamic objects. Our approach includes an ego-motion
compensation module for dynamic object detection and a 3D
trajectory predictor, resulting in a success rate of over 80% in
avoiding both airborne and ground dynamic objects, as demon-
strated on the MIT Mini-cheetah. Our ongoing efforts will
focus on refining the detection system to better compensate
for more complex ego-motion. In addition, we will develop
a more responsive controller that can adaptively avoid multi-
dynamic obstacles. The adaptive behavior will enable the robot
to adjust its height and orientation as needed.
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