
PyPose v0.6: The Imperative Programming Interface for Robotics
Zitong Zhan1, Xiangfu Li2, Qihang Li1, Haonan He3, Abhinav Pandey2, Haitao Xiao4, Yangmengfei Xu5, Xiangyu Chen1,
Kuan Xu6, Kun Cao6, Zhipeng Zhao1, Zihan Wang3, Huan Xu7, Zihang Fang8, Yutian Chen3, Wentao Wang2, Xu Fang6,

Yi Du1, Tianhao Wu3, Xiao Lin7, Yuheng Qiu3, Fan Yang9, Jingnan Shi10, Shaoshu Su1, Yiren Lu1, Taimeng Fu1, Karthik Dantu1,
Jiajun Wu11, Lihua Xie6, Marco Hutter9, Luca Carlone10, Sebastian Scherer3, Daning Huang2, Yaoyu Hu3, Junyi Geng2, Chen Wang1

https://pypose.org

Abstract— PyPose is an open-source library for robot learn-
ing. It combines a learning-based approach with physics-
based optimization, which enables seamless end-to-end robot
learning. It has been used in many tasks due to its meticulously
designed application programming interface (API) and efficient
implementation. From its initial launch in early 2022, PyPose
has experienced significant enhancements, incorporating a wide
variety of new features into its platform. To satisfy the growing
demand for understanding and utilizing the library and reduce
the learning curve of new users, we present the fundamental
design principle of the imperative programming interface,
and showcase the flexible usage of diverse functionalities and
modules using an extremely simple Dubins car example. We also
demonstrate that the PyPose can be easily used to navigate a
real quadruped robot with a few lines of code.

I. INTRODUCTION

PyPose is a Python-based, robotics-oriented, and open-
source library designed for researchers and rapid prototyping
[1]. Thanks to its adeptly crafted imperative programming
approach, it offers swift customization for distinct applica-
tions. PyPose has found use in diverse robotic applications,
including odometry [2], control [3], and planning [4]. It aims
to bridge the gap in robotic systems where deep learning-
based methods and physics-based optimization often end
up residing in separate modules implemented by different
libraries, which can lead to suboptimal solutions.

Since the last major release (v0.3†), PyPose has experi-
enced significant enhancements, incorporating a wide variety
of new features into its platform. We have noticed that there
is a growing demand for understanding and utilizing PyPose,
especially regarding the rationale behind the application
programming interface (API) design. To reduce the learning
curve of new users, this paper seeks to present the principle
of the imperative interface by showcasing several examples
covering diverse aspects of robotics, such as state estimation,
planning, and control. The contributions of this paper include

• We present the design philosophy behind the imperative
interface of the PyPose library. That is, the dynamic

Corresponding Email: admin@pypose.org
1State University of New York at Buffalo, Buffalo, NY 14260, USA.
2Pennsylvania State University, University Park, PA, 16802, USA.
3Carnegie Mellon University, Pittsburgh, PA 15213, USA.
4ZBL Co., Ltd., China.
5University of Melbourne, Parkville VIC 3052, Australia.
6Nanyang Technological University, Singapore 639798.
7Georgia Institute of Technology, Atlanta, GA 30332, USA.
8Northview High School, Johns Creek, GA 30097, USA.
9ETH Zürich, 8092 Zürich, Switzerland.
10Massachusetts Institute of Technology, Cambridge, MA 02139.
11Stanford University, Stanford, CA 94305, USA.

†A history of PyPose is at https://github.com/pypose/pypose/releases

Fig. 1: With just a few lines of code in Python using PyPose, a
quadruped robot can trace an ∞-shaped path.

system class is a unified API for various functionalities
such as state estimation, trajectory smoothing, and con-
trol. We show that each function can be done within a
few lines of code, using a simple Dubins car example.

• We demonstrate that the control loop can be extended to
real-world robots seamlessly, thereby enhancing robots
with the ability to utilize various out-of-the-box func-
tionalities within PyPose.

The name “PyPose” was inspired by an intriguing obser-
vation: the field of robotics can primarily be divided into
four areas: perception, control, planning, and simultaneous
localization and mapping (SLAM). Essentially, robot control
is about stabilizing its current pose, planning focuses on
generating future poses, and SLAM deals with estimating
the past and current poses. To differentiate the library from
PyTorch [5], which excels in perception, and to emphasize
its Python-centric approach and unique focus on robotics,
the library was named “PyPose”.

II. RELATED WORK

A comprehensive review was conducted in [1]. In this
study, we will compare some optimization libraries that are
widely used in robotic applications. Ipopt [6] is a C++-based
solver targeting non-linear programming. CasADi [7] is a
non-linear optimization tool and implements forward mode
algorithmic differentiation through a symbolic interface. It
serves as a base tool for many software in planning and
control. However, both Ipopt and CasADi are not designed
to work with robot learning methods. While HILO-MPC [8]
based on CasADi attempts to integrate machine learning with
optimal control models, it does not provide easy-to-use native
PyTorch support, and the control loop needs to be explicitly
defined. NeuroMANCER [9] is an open-source library that

https://pypose.org
https://github.com/pypose/pypose/releases


Current State Next State

Observation

Current Position

Waypoints

Current State

Input Sequence
Dynamic-feasible Trajectory

Target Points

Initial State Dynamic Model State Estimation

Trajectory 
Generation

Controller

Fig. 2: The operational workflow of the Dubins car system.

leverages PyTorch for differentiable programming, focusing
on constrained optimization, dynamic system formulation,
and parametric model-based optimal control. To the best
of our knowledge, PyPose is a pioneering PyTorch-based
library offering a comprehensive interface for robotics such
as perception, SLAM, and control involving optimization.

III. IMPERATIVE PROGRAMMING INTERFACE

Aside from the logical and modular design philosophies
of PyPose, our principle of defining modules is to keep a
general imperative interface that is compatible with a number
of accessories. This section elucidates our design principles
by focusing on four core modules: Dynamic Systems, State
Estimation, Trajectory Interpolation, and Control. To illus-
trate the seamless integration and utility of these modules,
we present a case study where a Dubins car is programmed
to navigate an ∞-like trajectory. The operational workflow
of the entire system is depicted in Fig. 2.

A. Dynamic System

Dynamics provides a framework for describing the be-
havior of systems as they evolve over time. Such behavior
can be generally modeled through two fundamental equations
representing prediction f and observation g:

xk+1 = f(xk,uk, tk) +wk (1a)
yk = g(xk,uk, tk) + vk (1b)

where tk, xk ∈ RN , uk ∈ RC , yk ∈ RM are the system
time, states, inputs, and observations at the k-th time step,
respectively. The terms w and v represent noise in the state
transition and observation functions, respectively.

We design System as a parent class for all dynamics sys-
tems including linear time-invariant (LTI) [10], linear time-
variant (LTV) [11], and non-linear system (NLS) [12]. They
not only carry the core functionality of performing state tran-
sition and system observation, but also provide the interface
enabling users to access the key properties, such as linearized
system matrices (automatically used by nonlinear control
modules), etc. System module and its sub-classes feature
two user-defined class methods state transition and
observation. To utilize those dynamic modeling capa-
bilities, users simply need to subclass one of the predefined
dynamic system templates and implement their specific state
transition and observation methods according to their needs.

With this architecture, the inherited forward method
from torch.nn.Module is used to handle state transi-
tions for discrete-time systems and advances the time step.

(a) DubinCar trajectory in ideal case (b) DubinCar trajectory with noise

Fig. 3: DubinCar system following waypoints.

This design streamlines the implementation of discrete-time
systems, which are commonly used in robotics.

We next demonstrate the simplicity of defining a system
with a DubinsCar model in (2). Generally, the state is
defined as a position and heading in 2D plane and the inputs
u = [v, φ] are linear velocity and angular rate

θk+1 = θk + φ ·∆t (2a)
ik+1 = ik + v · cos θk+1 ·∆t (2b)
jk+1 = jk + v · sin θk+1 ·∆t (2c)

In practical terms, to avoid the complications of angle
wrapping, we opt for using the trigonometric values cos(θ)
and sin(θ) instead of θ itself, and the system state is in
the form of [i, j, cos(θ), sin(θ)]. This approach mitigates the
issues of periodicity and discontinuity in angular values.

Due to its non-linearity, the DubinsCar model can be
defined as a subclass of NLS, where the users only need to
define methods state transition and observation.

1 class DubinsCar(pp.module.NLS):
2 # A 2-D DubinsCar kinematic model.
3 def __init__(self, dt=0.1):
4 super().__init__()
5 self.dt = dt
6

7 def state_transition(self, x, u, t=None):
8 v, phi = u[..., 0], u[..., 1]
9 c, s = x[..., 2], x[..., 3]

10 theta = torch.atan2(s, c) + phi * dt
11

12 i = x[..., 0] + v * c * dt
13 j = x[..., 1] + v * s * dt
14 c, s = theta.cos(), theta.sin()
15 return torch.stack([i, j, c, s], dim=-1)
16

17 def observation(self, x, u, t):
18 return x

In this example, we override f in state transition
and g in observation. The model takes the current state
x and an input u[i] as arguments, advances one time step,
and returns the next state and observation.

1 car = DubinsCar()
2 for i in range(N - 1):
3 x[i+1], y[i] = car(x[i], u[i])

Fig. 3a shows an ideal DubinsCar model follows the
∞-trajectory without noise using an optimal input sequence
calculated from the next section.

B. Optimal Control Solvers

We next show that an optimal controller can be calculated
on the fly based on the model’s real-time state in one



(a) Raw noisy observation (b) EKF estimation

(c) UKF estimation (d) PF estimation

Fig. 4: MPC relying in different filters

line of code. PyPose provides several differentiable optimal
controllers, including Linear Quadratic Regulator (LQR) [13]
and Model Predictive Control (MPC) [14]. LQR in PyPose
can be used for both linear time-invariant (LTI) and linear
time-varying (LTV) systems. Below we provide an example
of MPC, controlling the DubinsCar model tracing way-
points on an ∞-shaped trajectory. As illustrated in Fig. 3b,
the Dubins car visits each of the red waypoints, set as
intermediate goal state, in order. Its trajectory starts and ends
at the center (0, 0) location. The code snippet demonstrates
MPC moving the Dubins car to traverse through all of the
17 waypoints (the start, end, and intermediate points overlap
at the center location). Given the target parameter, the
MPC computes the optimum input and iteratively moves the
DubinsCar model until the current red target position is
reached. Each blue connected dot represents the updated
Dubins car state in one iteration.

1 mpc = pp.module.MPC(car, Q, p, T)

where Q and p represent the weight matrices for the quadratic
terms and the weight vectors for the linear terms at each time
step, respectively. T is the time horizon on which MPC solves
the optimization. Then an MPC object can be used as

1 v = q * torch.randn(4) # observation noise
2 xt, u, cost = mpc(dt, y[i] + v, target)

where dt is the time step interval, y[i] is the observation
from the previous iteration, v is the injected noice, and
target is the goal state defined in the exact same format as
the DubinsCar model’s state; then the expected states xt,
system inputs u, and cost along the time horizon will be
outputted. This example shows that the controller manages
the robot’s path effectively but the trajectory fluctuates in
the presence of noise. We next show that a state estimation
module can be applied to further reduce the effect of noises.

C. State Estimation

PyPose provided the commonly used Bayesian filters
[15] including extend Kalman filter (EKF) [16], unscented

(a) Local planned trajectory (b) Trajectory with EKF and spline

Fig. 5: DubinCar system with chspline

Kalman filter (UKF) [17], and particle filter (PF) [18]. Below
we demonstrate the usage of EKF on the same DubinsCar
system, and we hereby show that its usage only requires two
additional lines of code. The first line of code defines the
EKF module by wrapping up the Dubins car model.

1 ekf = pp.module.EKF(car)

Each time the system is propagated, the filter module takes
the same format of input as the dynamics module. The
second line of code is called immediately after the system is
propagated with an observation produced.

1 X[i+1], P = ekf(X[i], y[i], u[i], P, Q, R)

where X[i] is the estimated state from the previous step
and y[i] is the noisy observation; P, Q, and R are the state
estimation covariance of the previous step, covariance of
system transition model, and covariance of system observa-
tion model, respectively. The estimated observation could be
used in MPC to generate more accurate control signals when
observation noise is present. Fig. 4 shows results produced
by MPC when it takes either the raw noisy observation or the
estimation from filters as input to follow the same trajectory.

D. Trajectory Interpolation

PyPose provides trajectory interpolation algorithms,
B-spline (bspline) [19] and Cubic-Hermite Spline
(chspline) [20] as the guidance for trajectory smoothing.
The trajectory interpolation module serves as a valuable asset
for robotic planning in uncertain environments, the dense
smooth waypoints generated could guide the robot with a
position shift back to the desired trajectory. Furthermore,
the dense waypoints could decrease the computing cost of
MPC and overshoot probability. The chspline function
in PyPose is user-friendly and straightforward to implement.
By simply inputting a sequence of waypoints, the function
generates an evenly distributed, smooth trajectory with a
continuous first derivative. The code snippet below provides
an example of how to employ the chspline function for
online local trajectory planning with the DubinsCar model.

1 points = pp.chspline(waypoints, interval=0.2)

Fig. 5a provides an example of local planning using the
spline algorithm. The orange line serves as the ground
truth trajectory, represented as two circles. The black arrows
on the waypoints indicate the trajectory direction. The blue
trajectory is generated in accordance with the planned path,
while the red trajectory emerges when the robot deviates



State Inquiry

State Estimation

Spline

MPC

Fig. 6: Flow chart for the quadruped robot experiment.

from this path due to an initial positional shift. Notably, the
blue trajectory exhibits a high degree of alignment with the
ground truth, attesting to the module’s capability to generate
optimal trajectories. Moreover, the red trajectory eventually
merges smoothly with the blue one, illustrating the module’s
ability to produce smooth trajectories even when positional
shifts occur with the Dubins car.

Fig. 5b depicts a trajectory generated by combining the
EKF and chspline algorithms. When compared to the
results solely from EKF as shown in Fig. 4b, the inclusion
of chspline noticeably smooths the trajectory and brings
it closer to the desired ∞-shaped path. The algorithms
not only generate optimal and smooth trajectories but also
demonstrate resilience in accommodating positional shifts.
These methods also support batch processing of waypoint
sequences, enabling the generation of multiple trajectories si-
multaneously. This feature enhances computational efficiency
and expedites the planning process.

IV. EXPERIMENTS
This experiment aims to showcase the real-world appli-

cability of PyPose by integrating it with a Unitree Go1
quadruped robot. The task involves adding the execution on
a real robot into the PyPose implemented control loop, as
indicated in Fig. 6, and navigating the robot through the
waypoints on the ∞-shaped trajectory. The assumption is
that the robot has built-in localization producing reasonably
accurate position estimation, and can be controlled through
high-level motion commands. The controller on the robot is
a cluster of single-board computers loaded with a Ubuntu
desktop. The control loop could be executed on any remote
computer within the same local network as the robot.

In each iteration of the control loop, it inquires about the
position and heading of the robot. Using the inquired pose as
observation, the control loop sends a command to the robot
based on optimal control from MPC, until the robot reaches
a target. Finally, the trajectory illustrated in Fig. 7 is recorded
after the robot traverses through each of the target locations.
Each of the blue connected dots represents an observation at
a time step. Stacked snapshots of the real environment during
execution are shown in Fig. 1. This indicates that PyPose can
effectively guide the robot along the desired path.

V. CONCLUSIONS & DISCUSSION
In this paper, we highlighted the conciseness of the PyPose

library’s imperative interface. It offers a unified API for var-
ious functionalities, all achievable with a few lines of code.

Fig. 7: The trajectory recorded on the quadruped robot in Fig. 1.

Our experiments showed that PyPose integrates seamlessly
with a quadruped robot for navigation and equips robots with
a myriad of ready-to-use features. It is worth noting that
all functions presented in this paper are fully differentiable,
which makes an attractive starting point for the development
of more advanced end-to-end robot learning systems. We
expect that PyPose will inspire broader robotics research.

REFERENCES

[1] C. Wang, D. Gao, K. Xu, J. Geng, Y. Hu, Y. Qiu, B. Li, F. Yang,
B. Moon, A. Pandey, Aryan, J. Xu, T. Wu, H. He, D. Huang,
Z. Ren, S. Zhao, T. Fu, P. Reddy, X. Lin, W. Wang, J. Shi,
R. Talak, K. Cao, Y. Du, H. Wang, H. Yu, S. Wang, S. Chen,
A. Kashyap, R. Bandaru, K. Dantu, J. Wu, L. Xie, L. Carlone,
M. Hutter, and S. Scherer, “PyPose: A library for robot learning with
physics-based optimization,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. [Online]. Available:
https://arxiv.org/pdf/2209.15428.pdf

[2] T. Fu, S. Su, and C. Wang, “iSLAM: Imperative SLAM,”
arXiv preprint arXiv:2306.07894, 2023. [Online]. Available: https:
//arxiv.org/pdf/2306.07894.pdf

[3] A. Pandey, D. Huang, Y. Yu, and J. Geng, “Learning koopman
operators with control using bi-level optimization,” in 2023 IEEE 62st
Conference on Decision and Control (CDC). IEEE, 2023.

[4] F. Yang, C. Wang, C. Cadena, and M. Hutter, “iplanner: Imperative
path planning,” in Robotics: Science and Systems (RSS), 2023.
[Online]. Available: https://arxiv.org/pdf/2302.11434.pdf

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style,
High-Performance Deep Learning Library,” in Advances in Neu-
ral Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, Eds. Curran
Associates, Inc., 2019, pp. 8024–8035.

[6] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

[7] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, 2018.

[8] J. Pohlodek, B. Morabito, C. Schlauch, P. Zometa, and R. Findeisen,
“Flexible development and evaluation of machine-learning-supported
optimal control and estimation methods via hilo-mpc,” 2022.

[9] A. Tuor, J. Drgona, J. Koch, M. Shapiro, D. Vrabie, and S. Briney,
“NeuroMANCER: Neural Modules with Adaptive Nonlinear Con-
straints and Efficient Regularizations,” 2023.

[10] https://pypose.org/docs/main/generated/pypose.module.LTI/.
[11] https://pypose.org/docs/main/generated/pypose.module.LTV/.
[12] https://pypose.org/docs/main/generated/pypose.module.NLS/.
[13] https://pypose.org/docs/main/generated/pypose.module.LQR/.
[14] https://pypose.org/docs/main/generated/pypose.module.MPC/.
[15] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear

approaches. John Wiley & Sons, 2006.
[16] https://pypose.org/docs/main/generated/pypose.module.EKF/.
[17] https://pypose.org/docs/main/generated/pypose.module.UKF/.
[18] https://pypose.org/docs/main/generated/pypose.module.PF/.
[19] https://pypose.org/docs/main/generated/pypose.bspline/.
[20] https://pypose.org/docs/main/generated/pypose.chspline/.

https://arxiv.org/pdf/2209.15428.pdf
https://arxiv.org/pdf/2306.07894.pdf
https://arxiv.org/pdf/2306.07894.pdf
https://arxiv.org/pdf/2302.11434.pdf
https://pypose.org/docs/main/generated/pypose.module.LTI/
https://pypose.org/docs/main/generated/pypose.module.LTV/
https://pypose.org/docs/main/generated/pypose.module.NLS/
https://pypose.org/docs/main/generated/pypose.module.LQR/
https://pypose.org/docs/main/generated/pypose.module.MPC/
https://pypose.org/docs/main/generated/pypose.module.EKF/
https://pypose.org/docs/main/generated/pypose.module.UKF/
https://pypose.org/docs/main/generated/pypose.module.PF/
https://pypose.org/docs/main/generated/pypose.bspline/
https://pypose.org/docs/main/generated/pypose.chspline/

