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Abstract— Drones have the potential to revolutionize power
line inspection by increasing productivity, reducing inspection
time, improving data quality, and eliminating the risks for
human operators. Current state-of-the-art systems for power
line inspection using drones have two shortcomings: (i) control
is decoupled from perception and needs accurate information
about the location of the power lines and masts; (ii) obstacle
avoidance is decoupled from the power line tracking, which
results in poor tracking in the vicinity of the power masts, and,
consequently, in decreased data quality for visual inspection.
In this work, we propose a model predictive controller (MPC)
that overcomes these limitations by tightly coupling perception
and action. Our controller generates commands that maximize
the visibility of the power lines while, at the same time, safely
avoiding the power masts. For power line detection, we propose
a lightweight learning-based detector that is trained only on
synthetic data and is able to transfer zero-shot to real-world
power line images.

Video: https://youtu.be/JA6h-Nv29pU

I. INTRODUCTION

Drones exhibit the potential to bring about a revolutionary
transformation in the industrial inspection market [1], [2].
Particularly, quadrotors are a fast-to-deploy and cost-effective
solution for power line inspection. The EU and US power
systems consist of more than 10 million km of power lines
and distribution transformers, which connect more than 400
million customers [3], [4]. The power line infrastructure
needs to be inspected regularly to avoid power outages and
natural disasters (California’s second-largest wildfire was
sparked when power lines came in contact with a tree [5]).

State-of-the-art autonomous systems for power line in-
spection have two shortcomings: (i) Control and motion
planning are separated from perception, and they also require
precise information regarding the location of power lines and
masts. This information is only available in limited cases. (ii)
Collision avoidance and power line tracking are decoupled,
which could lead to losing track of the power lines after
successfully avoiding an obstacle. For further details, we
refer the reader to a survey on autonomous, vision-based
robotic inspection of power lines [6].

We propose a vision-based, tightly-coupled perception
and action solution for autonomous power line inspection
that does not require prior information about the power
line infrastructure, such as the location of the power lines
and masts. Our method plans and tracks a trajectory that
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maximizes the visibility of the power line in the onboard-
camera view and, at the same time, can safely avoid obstacles
such as the power masts. We achieve this by developing a
perception-aware Model Predictive Controller (MPC) [7] that
includes two perception objectives: one for line tracking and
one for collision avoidance. Adding multiple, and possibly
conflicting, perception objectives in the MPC is a challenging
task. In particular, the optimization could become infeasi-
ble and computationally intractable on resource-constrained
platforms such as quadrotors. We overcome this problem
by letting the MPC optimize over the weights of the two
perception objectives online.

To detect the power lines, we propose a novel perception
module that extends the deep-learning–based object detector
in [8] to the case of power line detection. The perception
module is trained only on synthetic data and transfers zero-
shot to real-world images of power lines without any fine-
tuning. In this way, we overcome the problem of the limited
amount of annotated data for supervised learning.

We believe that our method will contribute to accelerat-
ing the deployment of autonomous drones for power line
inspection. Our main contributions are:

• A novel system that tightly couples perception and
action for autonomous, vision-based power line inspec-
tion.

• A model predictive controller that optimizes online the
weight of the line tracking and collision avoidance
objectives.

• A learning-based power line detector that is trained only
on synthetic data and transfers zero-shot to real-world
images of power lines.

II. RELATED WORK

An overview of prior works in aerial power line inspection
using drones is in [6]. Several planning and control strategies
are presented in [9], [10]. A PID controller to control the
position and orientation of a quadrotor in relation to the
power lines is proposed in [9]. The solution proposed in [10]
uses perspective relation and estimation of the position of
the next tower to guide the drone. Both works loosely
couple perception, planning, and control and consequently
either need to have access to an accurate reference trajectory
or could result in poor line tracking after the collision
avoidance maneuver. A number of works [11], [12], [13],
[14], [15] focus on the perception task of detecting and
tracking the power lines. Model-based approaches, such as
variants of Hough transform and filters, using cameras are
proposed in [11], [12], [13]. In spite of their high weight and
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Fig. 1: Diagram of quadrotor and power line model.

computational load, Lidars could also be employed in some
specific situations as proposed in [14].

Model predictive control [16] is a powerful solution
to couple planning and control for quadrotor autonomous
flights. MPC has been used for perching on power lines [17]
and agile flights [18]. The first work introducing perception
awareness in MPC is [7] where the authors propose to
include a perception objective in the MPC to keep a point
of interest in the camera field of view. However, we deal
with two different perception objectives, line tracking, and
collision avoidance, which conflict with each other when
the drone approaches the power masts. To enable collision
avoidance capabilities, in [19], the authors utilized a chance-
constrained MPC formulation. This probabilistic collision
constraint allows to account for the perceptual uncertainty
and consequently enhances the obstacle avoidance robust-
ness. In [20], an MPC-based reactive planner for visual target
tracking and obstacle avoidance is presented. Different from
our method, this MPC does not directly generate control
commands but planned trajectories, which are tracked by
another low-level controller.

III. METHODOLOGY

A. Notation

In this manuscript, we define three reference frames. W
is the fixed world frame, whose z axis is aligned with the
gravity, B is the quadrotor body frame, and C is the camera
frame. These reference frames are depicted in Fig. 1. The
time derivative of a vector v is represented by v̇. In the case
of quaternion, the time derivative is defined as q̇ = 1

2Λ(ω),
where Λ(ω) is the screw-symmetric matrix of the vector ω.
The symbol ⊙ represents the quaternion-vector product. The
symbol × represents the cross product between two vectors.

B. Quadrotor Dynamics

Let pWB , qWB and vWB be the position, orientation, and
linear velocity of the quadrotor expressed in the world frame

W . Let ωB be the angular velocity of the body expressed
in the body frame B. Additionally, let c = Σici be the body
collective thrust, where ci is the thrust produced by the i-th
motor, c =

[
0, 0, c

]⊺
be the collective thrust vector, m be the

mass of the quadrotor, and gW be the gravity vector. Finally,
let J be the diagonal moment of inertia matrix and τB the
body collective torque. The quadrotor dynamical model is:

ẋ =


ṗWB

q̇WB

v̇WB

ω̇B

 =


vWB

1
2Λ(ωB) · qWB

qWB ⊙ c/m+ gW
J−1(τB − ωB × J · ωB)

 (1)

C. MPC Formulation

The system dynamics in Eq. 1 can be written in compact
form as ẋ = f(x,u). We compute the discrete-time version
of it by using a Runge-Kutta method of 4th order with time
step dt: xi+1 = f(xi,ui, dt). The MPC formulation is a
non-linear program with quadratic costs:

Lorg = x̄⊺
NQx,N x̄N +

N−1∑
i=0

(x̄⊺
i Qxx̄i + ū⊺

i Rūi)

argmin
u

Lorg

s.t. x̄0 = xinit

xi+1 = f(xi,ui)
umin ≤ ui ≤ umax.

(2)

D. Perception Objectives

Line Tracking: The purpose of this objective is to keep
the power line in the center of the image, to maximize data
quality for visual inspection, and to keep a safe distance
from the power lines. To this end, we denote the position
of the line endpoints in the world frame W as pWLj

j ∈
{1, 2}. These points are transformed to the camera frame
C to pCL1 and then pCL2 are projected into the image
plane coordinates: [u1, v1], [u2, v2] according to the classical
pinhole camera model [21]. The cartesian coordinates are
transformed into the polar coordinates as:

θ = arctan

(
−u2 − u1

v2 − v1

)
, r =

(
v1 −

v2 − v1
u2 − u1

u1

)
sin θ.

(3)
We introduce a new variable z̄ in our MPC formulation:

z =

 θ
r
d

 , zs =

 0
0
ds

 , z = z − zs. (4)

The variable d represents the distance of the line to
the body frame (c.f. Fig. 1) and ds represents the target
value of d. The value of ds is set by the user according
to the desired distance of the flight from the power lines.
Obstacle Avoidance: Inspired by [22], [23], we include

collision avoidance capabilities in our MPC by means of
a collision cost and a collision constraint. The collision cost
lo is formulated with the logistic function:

lo = Qo/(1 + exp(λo (do − ro))), (5)



where do represents the norm of the distance of the body
frame to the detected obstacle. The values Qo, λo, ro are
constant quantities that represent weight, smoothness, and
distance threshold, respectively. The collision constraint is
formulated as a probabilistic chance constraint to account
for the uncertainty in the drone state and in the obstacle
detection. The objective of this constraint is to ensure that
the probability of the collision with an obstacle is less than
a predefined threshold: Pr{Co} < δ. We model obstacles
as ellipsoids. Let ao, bo, co be the semi-principal axes of
the ellipsoid modeling an obstacle, and r the radius of a
safety area around the quadrotor body frame. The quadrotor
is considered to be in collision with the obstacle when:

Co : (pWB − pWO)
⊺
Ωo (pWB − pWO) ≤ 1, (6)

where Ωo is the uncertainty matrix defined as Ωo = R⊺
WO ·

diag
(

1
(ao+r)2

, 1
(bo+r)2

, 1
(co+r)2

)
·RWO. The quantity pWO

and RWO represent the position and orientation of the
obstacle with respect to the world frame W . Assuming that
the quadrotor and obstacle positions are random variables
distributed according to Gaussian distributions: pWB ∼
N (p̂WB ,Σ), and pWO ∼ N (p̂WO,Σo), respectively, we
derive the deterministic form of the chance constraint as:

n⊺
oΩ

1
2
o (p̂WB − p̂WO)− 1 ≥ erf−1(1− 2δ)·√

2n⊺
oΩ

1
2
o (Σ+Σo)Ω

1
2
o no (7)

where n is the normalized distance from the body frame
to the obstacle and erf(x) is the standard error function for
Gaussian distributions [24]. We rearrange Eq. 7 and write it
using the shorthand cc(p̂WB , ΣB , p̂WO, ΣO) ≤ 0 hereafter.

E. Perception-aware MPC for power line inspection

The two perception objectives of line tracking and obstacle
avoidance conflict when the quadrotor approaches the power
masts. For this reason, finding constant weights to attribute
to these objectives in the MPC is difficult. Our solution is
to adapt online these weights. To this end, we introduce a
new state variable, α. This variable varies in the interval
[0, αmax]. For values close to 0, high priority is given to
line tracking. On the contrary, for values close to αmax, high
priority is given to collision avoidance. The perception-aware
MPC proposed in this work is:

argmin
u,α

Lorg + Lper

Lper =

N−1∑
i=0

(
ᾱ2
i z̄

⊺
i Qpz̄i + lo +Qαα

2
i

)
s.t. x̄0 = xinit

xi+1 = f(xi,ui)
umin ≤ ui ≤ umax

cc(p̂WB,i, ΣB,i, p̂WO,i, ΣO,i) + cᾱi ≤ 0
0 ≤ αi ≤ αmax,

(8)

where ᾱ = 1 − α/αmax and c is a constant value that is
used to weight the priority of the chance constraint.
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Fig. 2: Overview of our learning-based power line detector and tracker. The
detector takes a single RGB image as input and outputs end points of the
detected power lines in pixel coordinates. The center patch of each detection
is matched with the prediction of the previous patch using the Hungarian
method [26]. We use a KLT tracker [27] to perform tracking. The final
output is the tracked lines endpoints which are given to the MPC.

Fig. 3: Sample images from the proposed power line dataset.

F. Line Detection and Tracking

In this work, we propose a novel deep-learning-based
power line detector based on the object detector [8], [25].
As shown in Fig. 2, our detector takes monocular RGB
images as input and outputs: (i) width wi and height wi of
the bounding boxes that fully contain the detected power
line, where i indicates the number of detection; (ii) the
inclination of the line oi (either +1 or -1). The endpoints
of positive inclined lines, i.e., oi = +1, correspond to the
top-left and bottom-right corners of the bounding box. The
endpoints of negative inclined lines correspond to the top-
right and bottom-left corners of the bounding box; (iii) the
center of the line [uic, vic]; (iv) the confidence score c of
the prediction. If the confidence score is not larger than a
predefined threshold (we use 0.8 in all our experiments),
the detection is labeled as invalid and is not used. To
perform tracking, we use a tracking-by-detection approach
to track the detected power lines. We collected a dataset of
∼30k images of labeled power lines of different colors and
thicknesses in different 6 environments (c.f. Fig. 3).

IV. EXPERIMENTS

Benefits of our learning-based line detector: In these
experiments, we compare the proposed learning-based line
detector against a traditional line detector approach based on



Method Chamfer Distance EA Score

P R F P R F
Hough 0.70 0.32 0.44 0.46 0.19 0.28
P-Hough 0.26 0.31 0.28 0.10 0.16 0.10

Ours 0.92 0.77 0.84 0.93 0.78 0.85

Improvement (%) 31 141 91 102 311 204

TABLE I: Quantitative evaluation of the performance of the proposed
learning-based line detector and of the classical approaches.
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Fig. 4: Visualization of the flown trajectories color-coded according to the
values of α, c.f. Sec. III-E. Our MPC is able to find collision-free trajectories
starting from non-collision-free reference trajectories.

the Hough transform algorithm [28]. We design a traditional
line detection baseline that uses the Canny edge detector
algorithm [29] to detect edge features in the image and the
Hough transform algorithm to estimate the line parameters.
We also design a probabilistic version of this algorithm,
Probabilistic Hough Transform (P-Hough), that runs on a
sampled subset of the detected edges. The dimension of this
subset depends on predefined thresholds that vary according
to the number of detected edges. The parameters of the
traditional approach were tuned on the training sequences
of our simulated power line dataset. The results on the test
sequences are listed in Table I. We use the metrics proposed
in [30], which are the Precision, Recall, and the F1 score
of the line matching results based on Chamfer distance and
EA score [30]. Our line detector greatly outperforms the
traditional approach.
Robustness to unknown location of the power masts:

In this experimental setting, we evaluate the performance
of our system in the case where the initial reference trajectory
is in collision with the power masts. We run our tests
within the Flightmare simulation environment and assume
that the MPC has access to the ground truth obstacle position
and only vary the reference trajectory. We designed an
environment with 3 power masts (labelled A, B, C) as shown
in Fig. 4. We randomly sampled 100 starting points in a
rectangular region of size 8×3 m in the vicinity of the power

Simple Warehouse Forest Village Mean

Our MPC 0.74 0.63 0.61 0.67 0.67
Classical MPC 0.53 0.49 0.44 0.45 0.48

TABLE II: Quantitative comparison of the proposed perception-aware MPC
(Eq. 8) against the classical MPC formulation (Eq. 2). The evaluation metric
refers to the visibility of the line (Eq. 9).

mast A (the center of A is located in the middle of the bottom
edge of this rectangular region). The endpoint is fixed 1 m
away from the left side of the power mast C. The reference
trajectory given to the MPC is a straight line connecting
the starting and end points with no yaw change. Some of
these reference trajectories are in collision with the power
mast B. Our system achieves a 100% success rate, i.e. no
collision with the power masts. We show in Fig. 4, 13 flown
trajectories.
Benefits of tightly-coupling perception and action: In
this experiment, we evaluate the benefits of tightly-coupling
perception, planning, and control in terms of the visibility of
the power lines compared to the classical MPC formulation.
We use the proposed learning-based line detector and assume
that the MPC has access to the ground-truth position of the
power masts. We use the similarity score S as the evaluation
metric, which is defined as:

Sθ = 1− 2θ

π
, Sd = 1− h√

w2 + l2
, S = (Sθ · Sd)

2 (9)

where θ is the normalized angular distance between the
detected and the reference line, and h is the normalized
distance between the center points of the lines. The quantity
h is normalized by the length of the image diagonal, where
w and l are the image width and height, respectively. The
results are in Table II. Our perception-aware MPC improves
the line visibility on average by 40%.

V. CONCLUSIONS

In this work, we present a system for autonomous power
line inspection using perception-aware MPC. Our approach
generates control commands that maximize the visibility of
the power lines while safely avoiding the power masts. Our
MPC formulation includes two perception objectives, one
for line tracking and one for obstacle avoidance. The MPC
adapts the weights of these two objectives online. To detect
the power lines, we propose a novel learning-based detector.
This learning-based detector is only trained on synthetic data
and is able to transfer to real-world images without any fine-
tuning. We show that our system is robust to unknown infor-
mation on the position of the power lines and power masts.
We also show that our perception-aware MPC improves
power line visibility by 40%. We demonstrate a real-world
application in a mock-up power line environment. Future
improvements for our system might include i) improving
system robustness against disturbances such as wind [31],
model mismatch [32] or sensor failures [33] and ii) perching
on the power line [17] in order to recharge the battery on
the fly [34].
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