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Abstract—Teams of aerial robots allow for large-scale filming
of dynamic groups of people in complex environments for novel
applications in cinematography, sports, and exploration. Toward
this end, methods for submodular maximization can be used for
scalable optimization of camera views across teams of robots.
However, multi-robot planning systems that use submodular
maximization such as SGA (Sequential Greedy Assignment) face
challenges with efficient and optimal coordination in highly
cluttered environments. Dense obstacles increase inter-robot
collision and environment view occlusions which can violate
the partition matroid requirements for SGA’s 50% optimality
guarantee. To coordinate teams of aerial robots in filming groups
of people in dense environments, a more general view-planning
approach is required. In this paper, we explore how collision
and occlusion impact optimality and performance in filming
applications through the development of a multi-agent dynamic-
multi-target view planner with an occlusion-aware objective for
filming groups of people and compare with a naive fixed for-
mation planner. To evaluate performance, we plan in three high
occlusion/collision test environments with complex multi-target
behaviors and measure the average target coverage. Compared
with a fixed formation planner, our sequential planner generates
40% more target coverage with the same number of agents and
similar performance with fewer agents. Even without a strict
bound on suboptimality, we observe efficient and collaborative
behaviors which demonstrate the capabilities of sequential greedy
planning for real-world multi-agent view planning. Overall,
through improving multi-agent filming, effective coordination of
teams of aerial robots can enable novel higher systems system
behaviors that are otherwise infeasible.

I. INTRODUCTION

The capture of significant events via photos and video
has become universal, and Unmanned aerial vehicles (UAVs)
extend the capabilities of cameras by allowing for view
placement in otherwise hard-to-reach places and by tracking
intricate trajectories. Multiple aerial cameras can be used to
not only view a target from multiple angles simultaneously
but perform higher functions such as cinematic filming [1],
efficient environment exploration [2], and outdoor human pose
motion capture [3]. These applications rely on effective col-
laboration between groups of UAVs whereas manual control
may result in poor shot selection and view duplication while
requiring many coordinated operators. Therefore, autonomous
coordination of UAV teams is needed to achieve reliable multi-
robot filming. However, directly maximizing domain-specific
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Fig. 1. Multi-Target Coverage Scenario: Known target and environment
geometries as well as target trajectories with agent start locations are input
into the view-planning system. The planner aims to maximize coverage over
all of the target throughout the planning horizon.

metrics, such as reconstruction accuracy, can be difficult to
estimate online which motivates proxy objectives such as
coverage. For example, in [1], cinematic filming is attained
through a joint objective combining collision and occlusion
avoidance, shot diversity, and artistic principles in filming a
single target.

While defining an objective can be difficult, planning for
multi-agent aerial systems also presents a significant challenge
due to the vast joint state space and non-linear objectives caus-
ing optimal planning to be often intractable. Many applications
exploit problem-specific structures to reduce the overall search
space or alter the search procedure to generate single-agent
trajectories sequentially. [3] uses a preconfigured target-centric
formation to coordinate views of a single target from multiple
angles. This reduces the search space to a lower dimensional
search over formations rather than a search over each agent’s
motions jointly. A key limitation of this approach is the agent-
target assignment which requires agents to focus observation
on a specific target and may fail to exploit the robots’ capacity
to observe multiple targets at once.

Sequential methods can also obtain sub-optimally guaran-
tees when the problem is formulated as submodular max-
imization. [4] demonstrates dynamic target coverage as a
notable objective that submodular maximization can exploit.
[5] employs a submodular planning framework for single-
UAV aerial mapping and [6] presents static multi-agent view
planning for reconstruction with arm-mounted sensors.

Problem: The dynamic multi-target coverage problem is
defined as generating a set of camera sequences for a finite



horizon that maximize collective pixels per area (PPA) viewed
by the cameras. The primary assumptions required for this
problem are: known static environment, known actor trajec-
tories (e.g. scripted scenarios), and known agent start state.
An illustration of the problem setup is depicted in fig. 1.
Generating unassigned view plans though the environment
allows agents to increase target coverage and in some cases
require less sensors to achieve similar performance.

Approach: Similar to other multi-agent planning systems,
our planner employs Sequential Greedy Assignment (SGA) to
sequentially plan optimal single-agent actions to generate a
collective multi-agent plan. An overview of the view planning
system is depicted in fig. 2. We first abstract our scene repre-
sentation by converting target geometries to a simplified mesh,
translating a 3D world representation (point cloud, mesh, etc.)
to a 2.5D height map, and instantiating sensor/motion models
for the agents. Next, we discretize the agent state space and
action space as a time-dependent 2D grid with heading to
allow us to formulate the single agent planning problem as a
Markov Decision Process (MDP). Target coverage is computed
through an occlusion-aware software rendering system which
computes the pixel densities for each target face. By applying
an objective that features decreasing reward for repeated views
of the same face and monotonically increasing the reward
for more coverage, submodular maximization methods can be
applied to the problem.

Contributions: The main contributions of this work are
summarized as:

• Implementation of a dynamic multi-target multi-agent
view planner.

• Occlusion-aware objective for filming groups of people
through software rendering

• Initial evaluation of such a planner with awareness of
inter-agent collisions and comparison against a planner
based on fixed formations.

II. RELATED WORKS

Aerial Filming: Aerial perception systems have grown
to widespread use through their success in providing low-
cost filming of conventionally challenging unscripted scenes.
Consumer and commercial systems such as the Skydio S2+
[7] demonstrate single-drone filming capabilities and are
starting to incorporate collaborative multi-drone behaviors
for mapping. Viable autonomous aerial filming systems for
cinematography have been demonstrated by [1] using a single
actor tracking and filming system. As well as [8] through
a multi-drone filming system with a variety of filming and
coordination modes.

Submodular Multi-Agent Planning: Multi-agent submod-
ular planning aims to efficiently generate bounded sub-optimal
trajectories and is explored in many works including [6] with
sensors fixed at the end of robot arms as well as with [2] for ef-
ficient exploration in unknown environments. [4] demonstrates
that submodular techniques are specifically beneficial to target
coverage problems.

III. PROBLEM FORMULATION

We aim to coordinate a team of UAVs to maximize coverage
(or observation) of multiple targets through an obstacle-dense
environment. Application specific metrics are often difficult
to directly measure online, therefore, we use a coverage-
like objective as a proxy for effective target observation. To
promote view diversity we integrate a diminishing square root
reward for coverage of the same target face by multiple views.

Consider a set of targets T = {1, . . . , Nt} each with a
set of faces Fj = {1, . . . , Nj,f} where j ∈ T and a set of
robots R = {1, . . . , Nr}. Each robot i ∈ R can take action
ui,t ∈ Ui ∈ SE(2) at time t ∈ {0, . . . , T}. Each robot i will
select its plan from its local set of finite-horizon sequences of
viable control actions.1 Additionally, robots have an associated
state xi,t ∈ X where X is also a subset of SE(2). X is
a shared state space with all robots, however, each robot’s
trajectory ξi = {xi,0, . . . , xi,T } once fixed, produces non-
collision constraints for all other robots. Given the trajectories
of all targets in SE(3), start states xi,0 and environment
geometry, we aim to find a joint collision-free control sequence
U∗ =

⋃
i∈R{ui,0, . . . , ui,T } which maximizes our objective

and fits our motion model.

A. Motion Model

State transitions for each robot are specified by the follow-
ing motion model:

xi,t+1 = fi(xi,t, ui,t)

Where fi is defined to only allow collision-free actions within
the constant velocity constraints. In a time step length, the
maximum translational and rotational velocity is converted to
a maximum Euclidean radius as illustrated by fig. 2 motion
model. The current state of the robot is used to find the set of
available actions and changes as the robot navigates the state
space.

B. Sensor Model

Inspired by [9], observation of faces of each target j is cap-
tured by the pixel density ( px

m2 ) measured from a linear camera
model’s image. We can define a function cov(xi,t, j, f) → R
which returns the pixel density for a specific target’s face when
observed from a robot’s state. And covsum(j, f) → R which
returns the summed pixel density from other robots’ plans. We
then apply a square root to introduce diminishing returns on
increasing pixel density to produce the following:

viewreward(xi,t) =∑
j∈T

∑
f∈Fj

√
cov(xi,t, j, f) + covsum(j, f)

1In the literature on suboptimal maximization, these local sets of actions
form blocks in the structure known as a partition matroid which forms the
structure of the joint multi-robot problem



Fig. 2. Coverage View Planner System Overview Multi-target scenario is translated to internal planner representation. Markov Decision Process with DAG
encodes collision constraints and coverage objective. Multi-Agent View Plan is produced through sequential greedy planning. Joint multi-drone trajectories
are brought back to continuous 3D coordinates and outputted to navigation stack.

C. Objective

In addition to maximizing coverage, we add a reward for
stationary behavior Rs(ui,t) to reduce unnecessary movement.
We define the reward objective for a single agent as follows:

R(xi,0, {ui,0, . . . , ui,T }) =
∑

t∈{0,...,T}

Rs(ui,t)

+ viewreward(f(xi,t−1, ui,t))

And the joint objective as follows:

Q(Xinit, U) =
∑
i∈R

R(xi,0, {ui,0, . . . , ui,T })

where Xinit = {x0,0, . . . , xNr,0} is the set of initial robot
states.

Since we aim to find the control sequence which maximizes
this objective our optimal control sequence can be defined as:

U∗ = argmax
U

Q(Xinit, U)

IV. MULTI-DRONE MULTI-TARGET COVERAGE VIEW
PLANNER

We now present our multi-UAV coverage view planning
system. This planner aims to not only produce sufficient target
coverage but also exploit problem structure to efficiently find
single-agent greedy trajectories.

A. Coverage Representation

To incorporate an occlusion-aware coverage representation
we define cov by implementing an OpenGL rasterization ren-
derer which draws a 2.5D height map of our environment and
simplified geometries of each target. We then use a perspective
camera based on our specified camera intrinsics to capture
an occlusion-aware representation of what the sensor would
expect to see at a given robot state. To render environment
occlusions we use a geometry shader to draw the heightmap
directly on the GPU. To determine how many pixels we are
observing from each face, we render each face with a unique

color that corresponds to an encoding of the target ID and face
ID. When this unique color appears in the rendered image, we
can count the pixel frequency to measure our observed pixels
and divide by the associated face surface area to measure the
corresponding final pixel density. Figure 3 (b) illustrates an
example rendered view produced by the OpenGL rendering
system.

Fig. 3. Target Coverage (a) UAV camera model frustrum observing a
simplified target geometry. Target faces are colored slightly differently based
on a face identification system to allow for pixel density computation. (b)
Example camera output from OpenGL internal rendering system.

B. Single Agent Planning

With the robot state in SE(2) we aim to represent the single
agent planning problem as an MDP which has an underlying
DAG structure. The MDP state s is represented as an integer
vector:

s =
[
x y θ t

]
and each MDP action a is in the same discrete space with
a time increment of 1. This forces the MDP structure to be
directed since states can never go back in time. The MDP is
constructed with a transition matrix associating (s, a, s1) pair
with a transition probability and a reward matrix associating
each (s, a) pair with a reward. We then perform a Breadth



First Search over the state space by branch on feasible actions
to populate our transition and reward matrices. As depicted
in fig. 2 the set of available actions is pruned based on
environment and inter-robot collisions. This directed MDP can
be solved with one pass of value iteration to find the optimal
greedy policy (however, our current implementation converges
in 5 passes without exploiting this structure). Finally, we can
follow this policy from our initial state to produce the optimal
single-agent control sequence. We use the AI-ToolBox library
to represent and solve the MDP [10]

C. Sequential Planning

Finally, we are able to generate the joint view plan for
all of the agents by sequentially planning greedy single-
agent trajectories. This formulation is close to submodular
maximization which would yield sub-optimally bounded tra-
jectories, however, our consideration of inter-robot collisions
violates the formulation.

V. EXPERIMENTS

We evaluate the performance of the sequential view planner
in three test scenarios which aim to demonstrate the dynamic
view planning capabilities.

A. Naive Fixed Formation Planning

To compare our coverage planner with an assignment-based
view planner, we implement a naive fixed formation planner
modeled off of the multi-view formations described in [3]. We
define the formation with a constant radius around a target and
a separation angle ϕ. As described by [3] for Nr > 2 ϕ = 2π

Nr

and ϕ = π
2 when Nr = 2. A key consideration with our

implementation is that formations do not consider environment
and robot collisions since robots are fixed to their orientation
throughout the horizon.

B. Test Scenarios

Fig. 4. Preliminary test cases to evaluate specific aspects of multi-target view
planning.

Test scenarios in fig. 4 use agents with a camera intrinsic
parameters of 2500px, 4000px, and 3000px (focal length,
image width, image height). All drones are placed at 5 meters
high with a camera tilt of 10 degrees from the horizon.
Merge: Contains 2 targets/4 agents moving around a corner

in opposite directions for 17 timesteps. This test case demon-
strates dynamic target assignment with targets being “handed
off” at the corner shown by fig. 5.
Corridor: Contains 2 targets/2 agents moving through

a narrow corridor in 17 timesteps. This test focuses on the
collision-aware aspect of the planner.

Walls: Contains 2 targets/4 agents moving through a
sequence of occlusion walls in 10 timesteps. This test aims
to demonstrate the occlusion-aware objective which promotes
target views that are obstruction free.

C. Sequential Planner Performance
TABLE I

AVERAGE PIXEL DENSITY( Mpx
m2 ) IN TEST CASES

Merge Corridor Walls

Formation 1.70 0.68 1.77
Sequential 2.40 1.68 3.11

Sequential Nr − 1 1.91

Fig. 5. Generated joint trajectory for Merge test case in blue. Notably, agents
remain on their side of the corner and perform a “handoff” of the targets at
the corner.

In table I we track the average coverage observed by
all agents. All of our test cases demonstrate an increase in
megapixels per meter squared pixel density with a sequential
planner over a formation planner. Additionally, in the Merge
test case, sequential planning achieves similar results with
fewer agents. One reason why the sequential planner observes
targets more than the fixed formation planner may be due
to poor hand-chosen parameters for the formation planner.
The formation radius and camera tilt for the agent views can
be optimized to best evaluate the performance increase with
sequential planning.

VI. CONCLUSION AND FUTURE WORK

Through preliminary evaluation in three test cases, we ob-
serve collaborative behaviors which suggest effective solutions
that demonstrate submodular maximization may still perform
when considering inter-robot collisions even without bounded-
suboptimality. A key challenge with the current sequential
planner is computational efficiency, many of the processes
are unparallelized limiting online planning capabilities. In
future work, we aim to extend the view planning system to
consider sequence order, deploy view plans to a 3D human
pose reconstruction task, and optimize computation to run at
real-time rates.
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