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Abstract—Modern aerial robotics are increasingly being called
upon to execute complex, agile maneuvers in dynamically
changing environments. At the crux of this challenge lies the
integration of robust perception systems with adaptive control
mechanisms. Leading-edge solutions, exemplified by the Skydio
drone, predominantly rely on model-based methodologies. In
contrast, this work explores a different paradigm: Reinforcement
Learning (RL). Beginning with the introduction of a flexible
simulator and a versatile control framework, we highlight the
role of simulation for learning and the need for a versatile
platform for development. Next, we show how to leverage the
advantage of both policy search and model predictive control to
develop a learning-based controller for agile flight in a dynamic
environment. Furthermore, we delve deep into a fundamental
study between optimal control and RL and show that the
fundamental advantage of RL over optimal control lies in its
capability to optimize task-level objectives directly. Our findings
allow us to achieve an important milestone in robotics: pushing
a super agile drone to its physical limit, achieving a maximum
acceleration of 12g. Finally, we close the loop by showing how to
leverage visual representation learning for vision-based control.

A list of video demonstrations:
• Reaching the limit in autonomous drone racing
• Flying through dynamic gates
• Navigating through cluttered environment
• Perception-aware flight
• Robust representation learning
• Flightmare simulation

I. INTRODUCTION

Autonomous navigation of micro aerial vehicles has recently
achieved impressive results outside of research labs, from
exploring Mars to swarm navigation [1]. For maximal per-
formance, some tasks require flying the vehicle at high speeds
and pushing the aircraft to its physical limits of speed and
acceleration. In those scenarios, tolerance for error is low: a
small mistake can lead to a catastrophic crash. A fundamental
question is how should we design a control system for flying
fast while being robust against unknown disturbances.

Reinforcement learning [2] is an attractive approach and
has demonstrated exceptional performance in various robotic
domains, such as quadrupedal locomotion over challenging
terrain [3], [4]. RL has several advantages over model-based
control. First, it learns a control policy via offline optimization,
enabling the trained policy to compute control commands
during deployment efficiently. Second, RL can directly op-
timize the task’s performance objective, eliminating the need
for explicit intermediate representations such as trajectories.
Finally, RL is modeled as a Markov Decision Process, where

the state transition model can be formulated via probability,
enabling learning of a stochastic policy that is effective in
diverse environments.

Applying reinforcement learning (RL) to agile flight is
challenging due to the need for vast training data, the reality
gap between simulation and the real world, and safety risks
during high-speed flight. In addition, hardware limitations
and communication latencies further complicate the real-time
application of RL in agile flight environments.

II. CONTRIBUTIONS

In this study, we explore the intersection of high-speed
simulation, model predictive control, reinforcement learning,
and representation learning, aimed at addressing the challenges
in vision-based flight. Our results are summarized in Fig. 1.

First, we introduced two versatile software tools: Flightmare
and Agilicious. Flightmare [5] is a tailored simulation tool
for quadrotor applications, focusing on high-speed simulation
through parallel processing and photorealistic rendering. Agi-
licious [6] is a co-designed hardware and software framework
for testing model-based and neural-network-based systems in
the real world with a physical system.

Second, we proposed novel algorithms to design effec-
tive planning and control algorithms for agile flight. This
includes a policy-search-for-model-predictive-control frame-
work [7], [8], an end-to-end control method [9], [10], and a
hybrid method [11] that combines classical topological path
planning with model-free deep reinforcement learning. We
demonstrated the effectiveness of our approaches with several
challenging tasks, including flying through dynamic gates,
pushing the limit in autonomous drone racing, and navigating
through cluttered environments in minimum time.

Third, we investigated learning deep sensorimotor policies
for vision-based agile flight. Our solution [12], [13] combines
visual representation learning to extract feature representations
and privileged imitation learning to train a vision-based policy.
To enhance the robustness of the vision-based policy, it is
crucial to have consistent feature representations, which can
be obtained by utilizing contrastive learning along with data
augmentation.

In conclusion, our findings underscore the pivotal role
of reinforcement learning in empowering drones to achieve
their maximum potential while remaining resilient against
disturbances.

https://youtu.be/HGULBBAo5lA
https://youtu.be/Qei7oGiEIxY
https://youtu.be/wR1niZvI3pI
https://youtu.be/9q059CFGcVA
https://youtu.be/AX_fcnW9yqE
https://youtu.be/m9Mx1BCNGFU
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Fig. 1: Learning for agile flight: a synergy of simulation, model predictive control, reinforcement learning, and visual
representation learning.
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III. RESULTS

A. Flying Through Dynamic Gates
In [7], [8], we present a policy-search-for-model-predictive-

control framework for agile drone flight in dynamic environ-
ments. Flying through fast-moving gates is a proxy task to
develop autonomous systems that can navigate the vehicle
through rapidly changing environments. However, this is a
challenging task as it requires planning an accurate trajectory
that passes through the center of moving gates while also
controlling the quadrotor to follow the trajectory precisely.

We utilize model predictive control (MPC) as a parameter-
ized controller and formulate the search for high-level decision
variables for MPC as a probabilistic policy search problem.
A key advantage of our approach over the standard MPC
formulation is that the desired traversal time, which is difficult
to optimize simultaneously with other state variables, can be
learned offline and selected adaptively at runtime.

The resulting controller consists of a high-level neural
network policy and an MPC. The high-level policy was used
for adaptively making high-level decisions for the MPC. A
visualization of the framework is given in Fig 2. Given

Fig. 2: A graphical model of policy search for model predictive
control.

the predicted decision variables, MPC solves an optimization
problem and generates control commands for the vehicle. Our
controller achieved robust and real-time control performance
in both simulation and the real world. A demonstration of
the real-world experiment is shown in Fig. 1, where we
demonstrated an agile drone flying through a pendulum-like
dynamic gate.

B. Reaching the Limit in Autonomous Racing
The task of autonomous drone racing is to fly a quadrotor

through a sequence of gates in a given order in minimum time.
Solving this problem requires algorithms to be efficient and
fast. Suboptimal control policies readily manifest themselves
in reduced task performance, making drone racing a particu-
larly demanding and instructive setting for testing the limits
of control design paradigms.

In [9], [10], we leverage deep reinforcement learning and
parallel simulation to learn extremely aggressive trajectories
that are close to their time-optimal solutions. This is the
first learning-based approach for tackling time-optimal quadro-
tor flight using reinforcement learning. Our method exhibits
computational advantages over approaches based on trajectory
optimization.

Furthermore, we push an agile drone to its maximum per-
formance, achieving a peak acceleration greater than 12g and a
peak velocity of 108 kmh−1. Our policy achieves superhuman
control within minutes of training on a standard workstation.
Fig 1 displays time-lapse illustrations of the racing drone
controlled by our RL policy in an indoor flying arena.

C. Optimal Control versus Reinforcement Learning

Some of the most impressive achievements of RL are
beyond the reach of existing optimal control (OC) systems.
However, most of these successes are empirical. Less attention
has been paid to the systematic study of fundamental factors
that have led to the success of RL or have limited OC.
We argue that this question can be investigated along two
axes: the optimization method and the optimization objective.
On one hand, RL and OC can be viewed as two different
optimization methods and we can ask which method can
achieve a more robust solution given the same cost function.
On the other hand, given that RL and OC address a given
robot control problem by optimizing different objectives, we
can ask which optimization objective can lead to more robust
task performance.

In [9], our main contribution is the study of reinforcement
learning and optimal control from the fundamental perspective
of the optimization method and optimization objective. Our
results indicate that RL does not outperform OC because
RL optimizes its objective better. Rather, RL outperforms
OC because it optimizes a better objective. Specifically, RL
directly maximizes a task-level objective, which leads to more
robust control performance in the presence of unmodeled
dynamics. In the drone racing context, RL can optimize a
highly nonlinear and nonconvex gate-progress reward directly,
removing the need for a reference time trajectory or a contin-
uous 3D path. In contrast, OC is limited by its decomposition
of the problem into planning and control, which requires
an intermediate representation in the form of a trajectory
or path, thus limiting the range of control policies that can
be expressed by the system. In addition, RL can leverage
domain randomization to achieve extra robustness and avoid
overfitting, where the agent is trained on a variety of simulated
environments with varying settings.

D. Minimum-time Flight in Cluttered Environments

Minimum-time flight in cluttered environments is an im-
portant problem since it opens up possibilities for many time-
critical applications in the real world, such as research and
rescue. In [11], we leverage reinforcement learning and topo-
logical path planning to train robust neural network controllers
for minimum-time quadrotor flight in cluttered environments.
The key ingredients of our approach to minimum-time flight in
cluttered environments are three-fold: 1) generation of a topo-
logical guiding path using a probabilistic roadmap, 2) a novel
task formulation that combines progress maximization along
the guiding path with obstacle avoidance, and 3) combining
curriculum training with deep reinforcement learning.

We show that the presented method can achieve a high
success rate in flying minimum-time policies in cluttered
environments and outperforms classical approaches that rely
on traditional planning and control. The policy is trained
entirely in simulation and then transferred to the real world
without fine-tuning, with a peak flight speed of 42 kmh−1

and a maximum accelerations of 3.6g.
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E. Perception-aware Flight in Cluttered Environments

In [12], we tackle the problem of vision-based, minimum-
time flight in cluttered, known environments for quadrotors.
Minimum-time flight requires the vehicle to operate on the
edge of both its physical limits and its perceptual limits (e.g.,
limited field of view). The limited field of view of the onboard
camera is particularly constraining for quadrotors due to their
underactuated nature: in the most common configuration, all
the rotors point in the same direction, which causes the robot
to accelerate only in this direction. If the camera is rigidly
attached to the drone, this means that a trade-off must be found
between maximizing flight performance and optimizing the
visibility of regions of interest.

We propose a vision-based navigation system to fly a
quadrotor through cluttered environments at high-speed with
perception awareness. Our method combines imitation learn-
ing and reinforcement learning (RL) by leveraging a privileged
learning-by-cheating framework. We begin by training a state-
based teacher policy using deep RL to fly a minimum-
time trajectory in cluttered environments. This policy inte-
grates progress maximization and obstacle avoidance with a
perception-aware reward that aligns the camera orientation
with the flight direction. Next, by imitating the teacher policy,
we train a vision-based policy that does not rely on privileged
information about the obstacles. The resulting vision-based
policy achieves high-speed flight and high success rates. We
show that our policy has very low computational latency (just
1.4 ms) compared to classical methods with intermediate map
representations that have 10 times higher latency.

We test the closed-loop control performance of our vision-
based policy in the real world using hardware-in-the-loop
(HITL) simulation and the agilicious control stack [6]. HITL
involves flying a physical quadrotor in a motion-capture sys-
tem while observing virtual photorealistic environments that
are updated in real-time.

F. Robust Feature Representation Learning

Scene transfer in mobile robotics is a highly relevant and
challenging problem as a robot should be able to perform a
task outside of a known environment in the real world. We
study the scene transfer problem in the context of autonomous
vision-based drone racing. Vision-based autonomous drone
racing is a challenging navigation task that demands the
vehicle to operate at the edge of the vehicle limits. High speeds
and quick rotations of the camera induce motion blur and rapid
illumination changes, adding to the difficulty of the task.

In [13], we leverage contrastive learning and data augmen-
tation to train a perception network that can extract useful
feature representations from high-dimensional images. Using
contrastive learning, the perception network learns to focus on
useful visual features while ignoring irrelevant backgrounds.
In the drone racing context, the gate is the most relevant
visual information for the task. Thus, in the feature space,
representations are closely clustered when the robot is at
the same place and widely dispersed when the robot visits
different locations.

Given obtained feature representations, a vision-based con-
trol policy is trained using a privileged learning-by-cheating
framework. Our experiments, conducted in our realistic sim-
ulator [5], show that our vision-based deep sensorimotor
policy achieves the same level of racing performance as state-
based policies while being resilient against unseen visual
disturbances and distractors.

IV. DISCUSSION AND CONCLUSION

While our results are promising, it’s crucial to point out
that real-world deployments will always present unpredicted
challenges. The success of RL over OC in our tasks doesn’t
necessarily diminish the relevance of OC in drone control nor
in other robotic applications. It is also worth noting that while
we achieved significant milestones in drone racing, genuine
real-world settings, including varied conditions and dynamic
environments, demand further adaptability.

Future endeavors might explore ways to investigate visual
representation learning further, possibly incorporating online
adaptation to dynamic environments, and bridge the gap be-
tween simulation and the real world. To accelerate research
and let researchers focus on their problems, we have made our
simulator Flightmare [5] and our control stack Agilicious [6]
open-source.
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