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Abstract—In cluttered, unmodeled environments, many
learned manipulation pipelines rely on some inherent knowledge
of robot and end-effector extents to predict or solve for
feasible grasp poses and motion plans. However, these models
become specific to one robot geometry and cannot effectively
generalize to other end-effectors that have different feasible
grasp distributions. We present Gripper-Aware GraspNet, a
learned pipeline for grasping and manipulating unknown
objects in highly occluded environments, conditioned on gripper
geometry. This method builds off of prior work in learned
6D grasp generation that was previously limited to specific
gripper geometries and can predict grasps that utilize a wide
range of gripper extents. We demonstrate results on cluttered
tabletop picking from a single view pointcloud, and show results
that utilize full gripper extents across different end-effectors in
simulation. We also show a qualitative improvement on grasp
diversity when using different grippers in the real world.

I. INTRODUCTION

Robotic manipulation systems today are rather non-
standardized. Constant developments across the stack of
low-level controllers, high-level task and motion planners,
and end-effector hardware diversify the range of possible
system components and capabilities. Because of this, it can
be challenging to quickly set up a manipulation system
that is compatible with a specific mechanical or software
module of focus - having to “reinvent the wheel” at every
level of the stack can make iteration and collaboration
difficult. As the field develops, there is clear merit in modular
contributions that are “plug-and-play” compatible with a
variety of workflows and associated full-stack components.

This challenge increases as manipulation tasks become
more complex. When unmodeled environments and varying
robot geometries are introduced, high-level task and motion
planners necessarily become entangled with lower-level
perception and control systems: where a robot should grasp
an object depends on its task, where it could fit, where would
grasp the object stably, and what it can see. For example,
a home robot may be tasked with shelving a spice bottle
in a cabinet. The robot’s morphology may dictate which
grasps are feasible, but this will be further constrained by
limited perception and access to a cluttered shelf, as well
as which grasps are compatible with the task and potential
motion plan. The final solution that the robot arrives at will
be highly tailored to all of these factors at once. One common
approach is to create modules that are specialized to a certain
type of gripper, task, object, or scene and then solve the task
sequentially, iterating until each module can find a compatible
solution to its part of the task.

However, a different approach is to learn the relationship
between a robot’s capabilities and its environment and task,
and predict end-to-end compatible solutions. The bottle-
shelving robot may imagine one grasp that works if it’s
allowed to place the bottle on its side, and another grasp
that might work if it can open its fingers rather wide. This
approach makes it particularly simple to generalize across
different robot geometries and scenes, without needing to
retrain or adapt the entire stack to handle changes.

Our aim is to create a manipulation module that is capable
of synthesizing information from a perceived scene, robot
morphology, and task to propose feasible and useful grasps.
More specifically, we are interested in generating 6 degree of
freedom (DoF) grasps in a generalized format that are feasible
and compatible with any given end-effector and rigid-body
rearrangement of a scene, given a single-view depth image of
unmodeled clutter. We define “feasible” grasps as fulfilling
two requirements: (1) end-effector placement must lead to
a stable grasp of the object and (2) the grasp must enable
the robot to execute a motion trajectory from start to goal
placement without colliding with the surrounding scene.

We adapt the GraspNet framework, which can generate
6-DoF grasps for a specific gripper geometry on singulated
object point clouds. A prominent variation of GraspNet is
Contact-GraspNet, which adapts grasp generation to cluttered
scenes by creating and scoring grasps that correspond to
specific points on the perceived scene pointcloud. However,
the grasps generated by Contact-GraspNet are still implicitly
limited to the distribution of its training set, the ACRONYM
dataset of feasible grasps for the Panda Hand.

We tackle three main issues with this line of prior work
in 6-DoF grasp generation. (1) We generate a new dataset of
6-DoF grasps on synthetic objects that covers a significantly
larger range of gripper shapes. (2) Using this data, we train
a model to predict not only grasps but also the required end-
effector geometry to make each grasp feasible. (3) We pair
our grasp generation model with a convolutional occupancy
network [1], which operates as a learned collision checker
that generalizes to both different observed scene point clouds
and different gripper geometries. Together, this combination
of components allows us to apply the same model across
different systems and filter grasp predictions at test time based
on the geometry of the chosen end-effector and the observed
scene geometry.

In summary, the contributions of our work are as follows:
e A 6-DoF grasp generation network capable of predicting
both two-finger grasps and the associated end-effector
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Fig. 1: Gripper parameters. Minimum required grasp width
w is the distance between a contact point pair, and finger
depth d is the length of finger needed to reach the contacts.

extents required to reach each grasp, given a cluttered,
unmodeled scene.

« A manipulation pipeline using learned occupancy nets that
determines 6-DoF grasps that are feasible at the start and
end of a task.

« Demonstration and evaluation of this system across multiple
end-effector geometries, clutter, objects, and tasks.

II. METHOD
A. Problem Setup

We consider a robot observing a cluttered scene described
by pointcloud Pyeene € RN*3_ Within the scene, the task is to
move a rigid target object by a world-frame transformation
Tiargee € SE(3). It is assumed that both the transform and
the segmentation mask of the object in Py, are known,
and the object may therefore be unmodeled and/or partially
occluded without consequence. The robot is also equipped
with a two-fingered end-effector defined by finger parameters
depth d and grasp width range [wpin, Wmax|- These parameters
are visualized in Figure 1.

Given this information, we are interested in generating a set
of 6-DoF end-effector poses Tgrsp € SE(3) that will achieve
both successful grasp of the target object and execution of
the task. That is to say, both initial pose Tiyitial = Tgrasp and
final pose Tgoat = Tiarget - Terasp Must be collision free for
the specified gripper in the observed cluttered scene.

B. Gripper-Agnostic Grasp Generation

We begin with an observation that most two-contact grasps
are defined as a pair of antipodal contact points constrained
by two main parameters: how far apart the contacts can be
(the “grasp width” of the end-effector) and how far into the
object they can be (the “depth” of the fingers). By jointly
predicting grasp poses with the minimum gripper parameters
needed to reach each pose, one can simply filter out poses
associated to irrelevant parameter values in order to determine
which grasp set is probably reachable with the current gripper
geometry.

B1. Background: Contact-GraspNet

We modify the Contact-GraspNet (CGN) architecture [2]
to generate stable 6-DoF grasps on the visible surface of the
target object. We briefly review the architecture of CGN here.

Architecture and Feedforward Grasp Predictions. Given a
point cloud Pene consisting of 3D points {x;}¥ , x; € R3,
CGN predicts a set of per-point gripper poses {T;}¥ |, T; €
SE(3), and grasp-success probabilities {3;}¥,, 3; € [0,1].
Training and Losses. CGN is trained on ground truth grasps
obtained from the ACRONYM dataset [3]. Importantly, these
are densely annotated grasps of object models which are then
arranged into cluttered scenes and filtered for collisions. The
loss for the success probability prediction for a given contact
point c is based on whether or not c is within an € Euclidean
distance to any of the ground truth grasp labels for a given
scene.

B2. Our Implementation

To adapt Ty, to represent any gripper geometry, we
recognize that translation t in T = (R, t) is dependent on
depth d, which varies between grippers, and on the grasp
width range [wmin, Wimax]- Due to the nature of the ACRONYM
dataset, CGN only predicts grasps with a maximum depth
of 2.34 cm and predicts grasp widths that vary from O to 8
cm, which corresponds to the gripper extents of the Franka
Emika Panda Hand. We modify this approach by increasing
the possible grasp widths beyond the width of the Panda
Hand and including d as an additional predicted value in the
final multihead of the model.

This modification requires us to also expand the diversity
of label grasps seen in training. We generate and sample a
variety of antipodal grasp points on models across object
categories, unconstrained by width or depth. From here, we
are able to train on this data in the same manner that CGN
was trained. More details about our data generation can be
found in section III-E.

C. Modifications to CGN Architecture

Often, determining the required width and depth gripper
parameters for a given grasp is most heavily reliant on a
very local region to the queried contact point. Namely, the
larger point neighborhoods encoded by PointNet++ may not
be relevant to local parameter prediction, and it can prove
useful to re-emphasize a smaller, more grasp relevant region
of the pointcloud.

We observed that especially as the possible range of gripper
parameters increased, predicting grasp orientation vectors,
width, depth, and confidence in parallel could lead to disjoint
or unrelated distributions between the outputs and generally
make loss convergence rather difficult. Ultimately, we found
that implementing a more sequential approach to certain parts
of the final prediction outputs allowed for easier learning.

Our model architecture is as follows: As before, we begin
by encoding the scene pointcloud with PointNet++ to generate
pointwise feature vectors. We use these feature vectors to
predict per-point baseline vectors and confidence scores. From
here, we use the predicted baseline vectors to extract cylinders
of points from the pointcloud along each vector direction.
The corresponding pointwise features for each cylinder are
combined using max pooling, and this new per-grasp feature
is used to predict width, depth, and approach vector outputs.
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Fig. 2: Our modified architecture for Gripper-Aware GraspNet. We implement a tiered multihead to predict both grasp pose
and necessary gripper parameters. For execution, grasps can be filtered to match current available gripper parameters.

We also move from scalar regression for approach vector
prediction to discrete classification to better handle multi-
modality in feasible grasping distributions (such as being
able to grasp from both sides of a cereal box). A summary
of this approach can be seen in Figure 2.

D. Collision Prediction

Because our method no longer includes collision checking
implicitly in the forward pass (i.e. the gripper geometry is
no longer assumed and learned), we include a Convolutional
Occupancy Network [1] (CON) that predicts feasibility with
a specific gripper geometry. For our purposes, we also modify
model training to handle partial views of cluttered scenes.

We create a new dataset based off of the cluttered
simulation-rendered scenes already used for training GACGN
(section III-E contains further description of scene data
generation). A training data sample consists of a single-view
pointcloud of the scene and raster points that cover the volume
surrounding the scene. Labels consist of binary occupancy
scores for each raster point, only considering occupancy of
objects that are visible from the camera.

At evaluation time, we create both (1) a “query pointcloud”
of points sampled from the current gripper mesh, and (2)
an encoding of the scene pointcloud. For every grasp scored
highly by GACGN, we transform the gripper pointcloud to
the predicted grasp pose and query the occupancy of these
points using the CON decoder. Grasps that lead to the gripper
points intersecting with the predicted occupancy of the scene
are rejected as grasps in collision.

E. Data Generation

Our motivation for generating new training data is to
expand the distribution of positively labeled grasps beyond the
parameters of the Panda Hand. To do this, we used 67 objects
across 19 classes from the ShapeNet object model dataset
[4] to sample 100,000 antipodal contact pairs per object
mesh. These object classes were selected to reflect common
manipulation targets such as household objects. Namely,
unusual or uncommon object classes such as “helicopter”
were intentionally excluded from the object set — dense grasp
annotation was prioritized over diverse object classes. Rather
than labeling each contact pair with a gripper-specific Panda
Hand 6-DoF pose, we label each pair of contact points with

our intended model outputs: the associated vectors a and f),
grasp width w, and finger depth d.

For training, we render each table scene in Pyrender from
a randomly sampled camera angle and label pointcloud points
with the closest grasp within a lcm radius. Due to data storage
constraints, our final dataset is comprised of 110 scenes of
4-8 objects, each rendered from 10 camera angles, for a total
of 1,100 training data samples.

III. EXPERIMENTS: DESIGN AND SETUP

Robot, Environment, Task Setup. Our environment consists
of a Franka Emika Panda robot arm mounted on a table with
4-7 unmodeled objects placed before it. A statically-mounted
depth camera with known extrinsics observes the scene from
one randomly sampled view. Across the experiments, the robot
is equipped with various end-effectors, namely the Panda
Hand, the Panda Hand with custom finger geometries, and the
Robotiq 2F-140. For quantitative evaluation, we use PyBullet
[5] for large-scale execution in physics simulation. We also
qualitatively demonstrate the capabilities of the pipeline on a
set of contextually grounded real world applications.

The evaluation task is to successfully execute pick and
place of an unmodeled, partially occluded object in the scene.
The target object is specified by a ground truth segmentation
of the single-view pointcloud, and the object transform is
specified as a rigid SE(3) spatial transform in the world frame.

For each method being evaluated, a set of feasible grasps
(defined as those above a certain predicted success threshold)
is generated for a given scene, object transform, and gripper
geometry. Of this proposed grasp set, grasps are sampled and
checked with PyBullet’s ground truth collision checker. If the
grasp pose is found to be feasible with the gripper and clutter
for the start and end of a task, then the grasp is executed
using off-the-shelf inverse kinematics and motion planning.

Because motion planning and collision avoidance during
motion is not a main focus of this work, we use ground
truth obstacle avoidance and motion plan with RRT* between
fixed waypoints in the scene. For real world executions, we
avoid collision with the observed pointcloud by querying
the encoding of the scene that we already obtained via the
convolutional occupancy net.
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Fig. 3: CON predictions. Object meshes are rendered from a
single view, occupancy is predicted for dense raster points.

Evaluation Metrics. In evaluating GACGN, we seek to
demonstrate the following:

« Capacity to generate feasible grasps for a specific task
across a range of gripper geometries

o Improvement of grasp coverage from ACRONYM to better
reflect how gripper geometry affects grasp affordances

« Efficacy of convolutional occupancy nets on single-view
pointclouds in a collision-checking and motion planning
application

We define the following metrics:

Success rate: The ratio of successfully executed grasps out
of those proposed by the model, contingent on stable grasp
and collision free placement.

Grasp coverage: The extent to which the generated grasps
cover the graspable surface of the object. It is often valuable
to identify a diverse, feasible grasp set over which other
searches can be performed.

One can also quantify start and end feasibility of the

predicted grasps within the surrounding clutter. This is defined
as the percentage of grasps that are defined in the ground
truth as collision-free.
Baselines. We compare GACGN against two other methods.
CGN-CON refers to grasps that were generated using Contact-
GraspNet trained on ACRONYM scenes, and then filtered
using a convolutional occupancy net. GACGN generates
grasps using our modified version of Contact-GraspNet, filters
grasps to a specific gripper parameter set, and then filters
this set with the convolutional occupancy net. As an oracle
comparison, Labels-CON refers to execution of grasps in
the new dataset created to train GACGN. There is merit in
evaluating this dataset because it is based on a small set of
ray-casting heuristics to determine feasibility, rather than the
more rigorous way that ACRONYM grasps were evaluated.
GACGN(>Panda) refers to the execution of grasps solely
beyond the width and depth feasible by the Panda Hand.

IV. EXPERIMENTS: RESULTS

Pick and Place. We first evaluate the performance of GACGN
on 6-DoF pick and place tasks.

Four to seven object models from the ACRONYM dataset
are placed in front of a Panda robot, which is fitted with either
the Franka Emika Panda Hand or a larger parallel jaw gripper
with double the grasp width and height. Predicted grasps are
generated across a single-view pointcloud of the scene, and
these grasps are filtered by CON to remove colliding grasps.
Of these, the six grasps with highest predicted success are

| Panda Hand | Large Hand
Labels + CON 83% 72%
GACGN 81% 87%
GACGN (>Panda) _ 95%
CGN + CON 100% -

Fig. 4: Execution success rate for collision free grasps in
simulation (30 trials).

| Panda Hand | Large Hand
Labels + CON 65.2% 65.7%
GACGN 78.6% 67.7%
GACGN (>Panda) - 73.7%
CGN + CON 67.9% -

Fig. 5: Overall execution success rate across two different
end-effectors in simulation (30 trials).

executed by the robot. Success rates of collision free grasps
are recorded in Figure 4, and overall execution success rates
are recorded in Figure 5.

Dataset Evaluation. We evaluate the quality of our training
dataset as it compares to ACRONYM. This can be seen in
the “Labels + CON” lines of Figures 4 and 5.

Real World. We demonstrate GACGN quantitatively in the
real world. As shown in Figure 6, our model is capable of
generating grasps that fully utilize the extents of the Robotig-
2F140 gripper, which has almost double the grasp width and
depth of the Panda Hand.

Future Work. Thus far, we have only fully evaluated
execution success rate across grippers. Future evaluation
would include grasp coverage and feasibility across a motion
plan and object transformation, as well as across a wider
range of grippers.

V. CONCLUSION

We propose a method for learning grasp generation on
single-view, cluttered, novel scenes by adapting the GraspNet
framework to a more generalized grasp output format. By
using modern occupancy nets as collision checkers, grasps
generated in this format are able to effectively generalize
grasp generation to a wide range of end-effectors and tasks
while only proposing grasps that are relevant and viable.
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Fig. 6: Various grasps generated for use with the Robotig-
2F140 gripper. Grasps are beyond the extents of the Panda
Hand in both width and depth.
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