
General In-Hand Object Rotation with Vision and Touch

Haozhi Qi1,2, Brent Yi1, Sudharshan Suresh2,3, Mike Lambeta2, Yi Ma1, Roberto Calandra4,5, Jitendra Malik1,2

Abstract— We introduce RotateIt, a system that enables fingertip-
based object rotation along multiple axes by leveraging multi-
modal sensory inputs. Our system is first trained in simulation,
where it has access to ground-truth object shapes and physical
properties. Then we distill it to operate solely on realistic yet
noisy visual, tactile, and proprioceptive sensory inputs. These
multimodal inputs are fused via a visuotactile transformer,
enabling online inference of object shapes and physical properties
during deployment. Our work highlights that incorporating
visual and tactile sensing enables the policy to rotate diverse ob-
jects over multiple axes, and significantly outperforms previous
methods. Website: https://haozhi.io/rotateit/.

I. INTRODUCTION

Despite recent progress on in-hand manipulation for a
single or a few objects [1], [2], [3], [4], generalizable
object manipulation remains a challenge. In this paper, we
demonstrate that fingertip-based in-hand object rotation over
multiple different axes can be achieved from visual, tactile,
and proprioceptive sensory inputs. This task is challenging for
robots because of the need to simultaneously maintain stable
force closure while rotating objects with diverse geometries.

An overview of our method, RotateIt, is shown in Figure 2.
Our approach draws inspiration from recent advances in
training reinforcement learning policies with privileged in-
formation [5], [6], [7], [8], more specifically rapid motor
adaptation [6], [7]. We first train an oracle policy that is
conditioned on a representation of the privileged information
(called extrinsics, denoted as zt, as shown in Figure 2), which
contains ground-truth physical properties and shapes of the
objects. With access to this representation, the oracle policy
is able to efficiently and stably manipulate diverse objects
over multiple axes in simulation.

The key challenge for real-world deployment lies in estimating
the extrinsics encoding when privileged information is inac-
cessible. To address this challenge, we take inspiration from
the importance of multimodal sensing, particularly vision
and touch, during human manipulating objects [9], [10], [11].
We implement this by designing a visuotactile transformer
which operates on a history of multimodal proprioceptive,
visual, and tactile inputs to infer zt. Concretely, during
training, we rollout the oracle policy in simulation and
collect the foreground object depth, contact locations on the
fingertips, proprioception, and action history. Then we feed
these multimodal streams into a transformer to produce an
estimate of the zt, denoted as ẑt. The visuotactile transformer

1UC Berkeley,2Meta AI,3CMU,4TU Dresden,5The Centre for Tactile
Internet with Human-in-the-Loop (CeTI)
hqi@berkeley.edu

ji k

Raw Depth Object Depth Tactile Image (x4)Hardware Setup

Fig. 1: Rotation over multiple axes by integrating proprioception,
vision, and touch sensing. RotateIt is trained in simulation and
deployed directly to the real-world, where it generalizes to diverse
test objects without requiring fine-tuning.

is trained to minimize the difference between the predicted
and estimated encodings of the privileged information.

We demonstrate RotateIt can perform multi-axis object rota-
tion using only its fingertips. In simulation, we quantitatively
study the performance of rotating skills over three principal
axes in the hand-centric frame and the impact of incorporating
vision and touch in various stages (Section V-A and Section V-
B). To further understand what is learned by the policy, we
investigate how accurately the latent representation of the
policy captures the shape of the objects by trying to use
it to recover 3D shape (Section V-C). Finally, we deploy
the learned policies to rotate multiple different objects over
multiple axes in the real world, where it enables rotation
of objects that fail without visuotactile sensing (Section V-
D). In our website, we show our policy can rotate objects
including but not limited to the three canonical axes. Our work
highlights the importance of both visual and tactile sensing in
manipulation and presenting a step towards general dexterous
in-hand manipulation.

II. RELATED WORK

Sim2Real Methods. OpenAI et al. [1], [2] first transfers
dexterous in-hand manipulation policies to the real-world.
Similarly, [12], [4] uses a torque-controlled hand for cube
rotation and reorientation when hand facing downwards. How-
ever, they focus on manipulating one single object. Recently,
several works [7], [12], [13], [14] study generalizable in-hand
object rotation using reinforcement learning. Our method
differs from [7], [12], [14] as it is capable of rotating objects
along multiple axes instead of just the z-axis. Compared



Fig. 2: An overview of our training pipeline. Trainable components
are highlighted in green. In oracle policy training, we jointly
optimize the privileged encoder and control policy using PPO. In
the visuotactile policy training, we feed a sequence of visuotactile
and proprioception to a transformer to infer ẑt. The visuotactile
transformer is trained by minimizing the regression loss between
zt and ẑt.

Segment

Anything
Segmented 
ObjDepthRaw Depth

(b) Real Vision(a) Simulated Vision

Object DepthRaw Depth

(c) Simulated Touch

…

Discretized Contact 
Direction & Finger Index

(d) Real Touch

Contact leads to Deformation
Contact 
Direction

Color
Tracking

Fig. 3: Visuotactile information used in simulator and real-world.
In simulation, we use the object’s foreground depth as the input. In
real-world, to reduce the sim2real gap, we segment out the object’s
depth map using Segment-Anything. For touch, we use discretized
contact location in simulation provided by the simulator. In real-
world, we parse the same information from temporal stream of
tactile images.

to [13], our task is more challenging as it does not utilize
a supporting surface, which allows constant tactile feedback
on fingertips and enables a natural finger-gaiting to emerge.

Learning with privileged information is first shown in [15] and
is successful in sim2real for legged locomotion [5], [6] and
manipulation [7], [8]. [7] shows the policy can infer object
position and physical properties online using proprioceptive
history, but only works for z-axis rotation. [8] uses depth
image as input while we use both vision and touch and show
their importance.

Visuotactile Sensing and Learning. Vision-based tactile
sensors, such as GelSight [16], TacTip [17], DIGIT [18], and
GelTip [19], have been used for numerous applications includ-
ing grasping [20], playing the piano [21], 3D reconstruction
and localization [22], [23], [24], [25]. Previous work explores
to use vision and touch for manipulation [26], [27] but they
do not study in-hand manipulation with multi-fingered hand.
To the best of our knowledge, RotateIt is the first work that
intersects visuotactile sensing and learning to achieve general
in-hand object rotation with a dexterous hand.

III. METHOD

An overview of the method is shown in Figure 2. Our policy
training consists of two stages: First, we train an oracle policy
with privileged information in simulation. Next, we train a
visuotactile policy with realistic yet noisy observations.

A. Oracle Policy Training

Privileged Information. For the object’s shape information,
we sample Np points from the object’s mesh and encode it to a

x-axis y-axis z-axis

Method RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓

Hora [7] 79.13±11.22 0.52±0.02 0.55±0.03 82.25±14.21 0.54±0.04 0.44±0.01 99.83±11.72 0.60±0.03 0.39±0.04

Oracle 125.23±16.24 0.79±0.03 0.35±0.02 118.26±13.20 0.79±0.05 0.30±0.01 140.90±17.26 0.82±0.02 0.27±0.01

w/o shape 85.10±12.56 0.56±0.03 0.39±0.03 99.92±10.21 0.62±0.04 0.41±0.02 129.38±10.26 0.75±0.03 0.29±0.01

TABLE I: We show the performance improvement over varies
baselines on the rotation task over 3 different axis. We add two
components to Hora [7]. The first one is object and finger pose,
indicating the estimation is important. The second thing is the object
shape, which further improves the performance.

feature vector zshape
t with cp dimensions using PointNet [28].

One key difference from previous works [7], [8] is that we
explicitly encode object’s shape into the oracle policy, which
we find to be beneficial especially for complex objects that
are harder to manipulate.

The physics property contains object’s mass, center of mass,
coefficient of friction, scale, and restitution, resulting a 7-
dimensional vector. The pose contains object’s position, orien-
tation (as a quaternion), and angular velocity, resulting a 10-
dimensional vector. These vectors are concatenated together
and projected to an 8-dim encoding vector zphys

t . Our final
privileged encoding is concatenated from the shape encoding
and physical property encoding zt = [zphys

t , zshape
t ].

Observations and Outputs. The oracle policy π takes the
robot’s proprioception and the encoded privileged information
zt as input. It outputs the targets of the PD Controller at ∈
R16. The observation pt contains a small temporal window
of joint positions and actions pt = [qt−2:t,at−3:t−1] ∈ R96,
where qt ∈ R16 stands for the joint positions of the robot.
Formally, we have at = π(pt, zt).

Reward Function. Our reward function

r
.
= rrotr + λrotprrotp + λpose rpose + λlinvel rlinvel (1)

+ λwork rwork + λtorque rtorque (2)

is modified from [7] with an additional penalty on undesired
angular velocities component. The object rotation task is
defined as rrotr

.
= max(min(ω · k, rmax), rmin) where ω is

the object’s angular velocity and k is the desired rotation
axis in hand-centric axis. We find that naively applying this
reward will result in unstable and oscillating behaviors when
rotating over x and y-axis. To alleviate this problem, we
add a rotation penalty term rrotp

.
= ∥ω × k∥1. To make the

policy stable, smooth, and energy efficient, we use a few
penalty terms as in [7]. We use PPO [29] to optimize the
oracle policy.

B. Visuotactile Policy Training with Transformers.

We find robust and adaptive finger-gaiting emerges from
the oracle policy training. However, it is assumed to know
full object physical properties, pose, and shape as the input.
To deploy it in the real-world, we need to use real-world
observations to infer (representations of) these properties. [7]
uses proprioceptive states to estimate such information. In
this work, we augment the senses with vision and tactile
and study their important roles in improving manipulation
performance.



Vision. We use object depth as the vision representation since
1) it is a general representation and does not require human
labeling in the real-world and 2) it is hard to realistically
simulate RGB images whereas depth is a good abstraction of
object shape [30], [31]. In real-world deployment, instead of
using the raw depth from a RGBD camera, we use Segment-
Anything [32], [33] to segment out the objects to reduce the
sim2real gap. Formally, given an object depth image odepth

t ,
we encode it 3-layer ConvNet to output fdepth

t . An overview
of the vision pipeline is shown in Figure 3. We also randomize
the camera position and orientation during training, to make
the policy robust to minor viewpoint changes.

Touch. To reduce the sim2real gap for tactile sensors, we
choose to use the discretized contact location projected on 2D
plane as the proxy of tactile information. In simulation, we
directly parse the contact position provided by the simulator,
project it onto a 2D plane in fingertip frame, and discretize it
to 8 locations. The touch observation otouch

t is a 9 dimensional
vector with a binary indicator on 8 locations and one for
finger index indicator. During training, since the number of
contact points across episodes are not the same, we use an
MLP to each contact information and take an average of
different contact point features. In the real-world, we use four
omnidirectional vision-based touch sensors at the fingertips.
We track the deformation of the highest intensity pixel on
each sensor, which serves as a proxy for contact position
(Figure 3). This 2D keypoint from vision-based touch, similar
in spirit to [34], is directly fed into the policy. The touch
pipeline is shown in Figure 3.

Visuotactile Transformer. The goal of our visuotactile policy
is to accurately infer the learned representation of privileged
information. To tackle these challenges, we use a transformer
ϕ architecture to model these multimodal sensory stream.
We concatenate the encoded depth image fdepth

t , encoded
tactile contact points f touch

t , joint positions qt, and action
at the previous timestep at−1 to form the feature vector ft.
We feed a sequence of features fT = {ft−k, . . . ,ft−1,ft}
as input to the transformer. The transformer outputs ẑt as
the predicted extrinsic vector.

Training. Similar to previous work [5], [6], [7], we roll
out the oracle policy with the predicted extrinsic vectors
at = π(pt, ẑt) where ẑt = ϕ(fT ). Meanwhile we also store
the ground-truth extrinsic vector zt and construct a training
set B = {(f (i)

T , z
(i)
t , ẑ

(i)
t )}Ni=1. Then we optimize ϕ by min-

imizing the ℓ2 distance between zt and ẑt using Adam [35].
The process is iterated until the loss converges. We apply
the same object initialization and dynamics randomization
setting as the above section.

IV. EVALUATION SETUP

Hardware Setup. We use an AllegroHand from Wonik
Robotics [36] for our experiments. The Allegro hand is a
dexterous anthropomorphic robot hand with four fingers, with
four degrees of freedom per finger. Position commands are
sent to these 16 joints at 20 Hz. The target position commands

Modality x-axis y-axis z-axis

Method Vision Touch RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓

Oracle N/A N/A 125.23±16.24 0.79±0.03 0.35±0.02 118.26±13.20 0.79±0.05 0.30±0.01 140.90±19.26 0.82±0.02 0.27±0.01

Conv

66.23±8.72 0.41±0.04 0.64±0.01 54.19±9.27 0.38±0.02 0.69±0.02 89.21±12.37 0.56±0.03 0.47±0.03

✓ 87.21±12.11 0.59±0.02 0.59±0.02 72.51±9.10 0.57±0.03 0.62±0.03 102.35±10.74 0.68±0.02 0.42±0.01

✓ 82.19±9.21 0.60±0.03 0.57±0.01 69.99±7.26 0.58±0.01 0.61±0.02 107.73±9.83 0.63±0.02 0.46±0.02

✓ ✓ 98.20±10.18 0.70±0.03 0.45±0.03 89.82±9.22 0.67±0.03 0.47±0.01 113.26±13.98 0.70±0.04 0.40±0.01

Transformer

79.37±8.72 0.46±0.03 0.55±0.02 67.21±7.25 0.48±0.02 0.55±0.03 108.25±10.92 0.62±0.01 0.43±0.02

✓ 102.36±9.82 0.65±0.04 0.41±0.04 92.22±7.69 0.64±0.01 0.36±0.03 122.60±10.39 0.73±0.02 0.35±0.01

✓ 99.29±5.79 0.62±0.05 0.43±0.03 91.47±7.26 0.60±0.02 0.37±0.02 125.24±9.32 0.72±0.03 0.39±0.04

✓ ✓ 118.42±9.46 0.75±0.03 0.37±0.02 109.31±12.29 0.73±0.02 0.31±0.04 136.25±11.12 0.80±0.04 0.29±0.02

TABLE II: The importance of vision and touch. We show the
performance improvement of using vision, touch, and the transformer
architecture. Each of the three components significantly improves
the performance of rotating over x/y/z axis.

Stage 1 +192% +107% +89% +51% +56% +46% +34% +37%
Stage 2 +118% +119% +106% +89% +40% +35% +20% +13%

Fig. 4: Relative rotation reward improvements before and after
shape or visuotactile information. For stage 1 training (oracle
policy), we our oracle policy and our policy without point-cloud
as input. For stage 2 training (visuotactile policy), we compare the
improvement of RotateIt and the policy with only proprioceptive
input. In both cases, having vision and touch information significantly
improve the performance.

are converted to torque using a PD Controller at 300 Hz. We
use an Intel RealSense D435 placed at approximately 36cm
from the Allegro base. We use an omnidirectional vision-
based touch sensor at the distal end of each finger.

Simulation Setup. We use the IsaacGym [37] simulator.
Each environment contains a simulated AllegroHand and a
sampled object from our curated object datasets. Each object
is of different physical properties and a random initial pose.
For depth and viewpoint consistency between the real and
simulated cameras, we measure the camera-robot extrinsics
with an ArUco tag [38] placed on the palm of the real-world
Allegro. In IsaacGym, we use this SE(3) transformation
augmented with random pose noise, and further apply realistic
depth noise on the resultant images [39].

Object Set. We create a curated dataset for objects used in our
experiments from EGAD [40], Google Scanned Objects [41],
YCB [42], and ContactDB [43]. We select objects with
width/depth/height (w/d/h) aspect ratio less than 2.0.

Evaluation Metric. We use the metrics defined in [7] to
evaluate our method both in simulation and in the real-world.
In addition, we also evaluate undesired rotation penalties in
simulation. We find this metric is particularly important for
rotation over x and y axis.

V. RESULTS AND ANALYSIS

A. Object Shape helps Policy Training

The performance is shown in Table I. We compare RotateIt
with previous work [7] and our method without the usage of
point cloud while still using the quaternion. Experiments show
that using point-cloud significantly improves the performance
on all of the metrics and for all rotation axis. To get



x-axis y-axis z-axis

Touch RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓

Full 104.29±10.29 0.68±0.04 0.41±0.02 93.05±9.28 0.65±0.01 0.34±0.03 126.73±10.11 0.72±0.03 0.32±0.03

NoTouch 79.37±8.72 0.46±0.03 0.55±0.02 67.21±7.25 0.48±0.02 0.55±0.03 108.25±10.92 0.62±0.01 0.43±0.02

Binary 80.14±7.25 0.47±0.02 0.53±0.03 66.29±8.53 0.49±0.01 0.56±0.04 110.24±9.48 0.63±0.03 0.42±0.02

ContactLoc 102.36±9.82 0.65±0.04 0.41±0.04 92.22±7.69 0.64±0.01 0.36±0.03 122.60±10.39 0.73±0.02 0.35±0.01

TABLE III: The importance of using a finer tactile information.
We compare RotateIt which use contact location (ContactLoc) and
its variant of using binary contact (Binary) or full contact (position,
normal, and scale) information. All methods are without vision
information. We find that binary contact does not provide additional
value compared to NoTouch. We find using discretized contact
locations already match the performance of using full contact.

Cocoon Squishy Baseball Puzzle Box Stego

Method Cocoon Squishy Baseball Puzzle Box Stego

Hora [7] 0.54±0.39 0.50±0.47 0.26±0.19 0.48±0.25 0.52±0.18 0.46±0.23

RotateIt 12.71±1.29 8.29±1.73 6.72±0.91 6.12±0.79 5.05±0.87 5.01±0.79

Fig. 5: Rotations rotated (↑) for RotateIt and [7] in Real-world
Evaluation. We test RotateIt and Hora [7] on six different objects
for x-axis rotation. Hora is not able to finish this task and does not
learn finger-gaiting to rotate the object while RotateIt can.

more insights, we further plot the relative improvements
on varies objects shape for x-axis rotation, shown in Figure 4
(the “stage1” row). We find that point-cloud gives the
largest improvement on objects with non-uniform w/d/h
(width/depth/height) ratios and objects with irregular shapes
such as the bunny and light bulb. The improvements on
regular objects are smaller but still over 40%. Point-cloud
as an input is also used in [44] and [45] but they do not
explore how to use it for in-hand manipulation. Note that
our design is different from [8], which uses only pose for
the oracle policy and uses object shape information only in
the student policy. In our setting using object pose is not
sufficient to achieve good enough performance.

B. Visuotactile Transformer

The oracle policy evaluated in Section V-A cannot be
transferred to the real-world because it needs access to
a manipulated object’s ground-truth shape and physical
properties. We instead learn to infer this representation during
execution from proprioceptive, visual, and tactile history. In
Table II, we show the impact of using vision and touch,
and using transformer architecture to further improve the
performance. Specifically, we show that using either vision or
touch alone gives a huge performance improvement compared
to proprioceptive only regardless of the architecture and
rotation axes. For example, it increases RotR by 20 points
in each of the x / y / z axes. Secondly, we find using a
combination of vision and touch sensing can further improve
the performance. Lastly, transformer has better sequence
modeling ability compared to temporal convolutions used in
previous work [7], [5]. By integrating visuotactile sensing and
temporal transformer, our method can match the performance
of the oracle policy.

C. Representation Learned in the Latent Space

Next, we study the information that is encoded into zt and
ẑt. After we finish training policies, we perform roll outs
on a collection of 16 objects in our dataset and record the

Object mesh
(ground-truth)

Stage 1
(w/o shape)

Stage 1
(w/ shape)

Stage 2
(prop. only)

Stage 2
(visuotactile)

Fig. 6: Inverting encoded extrinsics. We predict 3D shapes on
novel objects from learned zt and ẑt. Stage 1 results are provided
with / without shape conditioning, stage 2 results are provided with
/ without visual and tactile sensors.

estimated extrinsics vectors. Then we train a mesh prediction
network in the training set and apply it on the test set.

In Figure 6, we visualize predicted shapes averaged over 100
randomly selected subsequences from rollouts on novel test
objects for four policies: the stage 1 oracle policy with and
without shape (mesh) conditioning, and the stage 2 policy
with and without visuotactile sensory inputs. The results
suggest that shape information is preserved and useful for
our oracle policy even though the only learning signal is
the reward function. We also find policies without object
shape will consider all the objects as spherical or cuboid
objects, which explains the huge improvement on objects
with large w/d/h ratios Figure 4. Next, our results also
highlight both the capabilities and limits of proprioception,
which we see can robustly distinguish between spherical
(beige) and cuboidal (green) objects. Shape understanding for
more irregular objects like the pear (blue), however, requires
additional sensors. This supports the increased benefit of
vision and touch for more complex objects that we observe
in Section V-A.

D. Real-world Evaluations

Finally, we quantitatively compare RotateIt and Hora [7] in
the real-world on rotating different objects over the x-axis.
We find that without vision and touch, Hora cannot finish this
task. It only learns in-grasp movement with thumb slowly
moving to the bottom of the object. It is also not able to
maintain stability; the object quickly falls down. In contrast,
RotateIt can successfully manipulate multiple objects with
different geometries such as cubes, spheres, or cylinders by
∼2π radians within 20 seconds. We show qualitative results
on rotation around and beyond the three canonical axes on
our website.

VI. CONCLUSION

In this paper, we show the feasibility of training policies
that can rotate many objects over multiple axes. We view
this capability as an important step towards general-purpose
in-hand manipulation.



REFERENCES

[1] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” IJRR, 2019.

[2] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv:1910.07113, 2019.

[3] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu,
D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam,
Y. Narang, J.-F. Lafleche, D. Fox, and G. State, “Dextreme: Transfer of
agile in-hand manipulation from simulation to reality,” in ICRA, 2023.

[4] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml, “Dextrous tactile in-hand
manipulation using a modular reinforcement learning architecture,” in
ICRA, 2023.

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science Robotics,
2020.

[6] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” in RSS, 2021.

[7] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand object
rotation via rapid motor adaptation,” in CoRL, 2022.

[8] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal,
“Visual dexterity: In-hand dexterous manipulation from depth,”
arXiv:2211.11744, 2022.

[9] G. Westling and R. S. Johansson, “Factors influencing the force control
during precision grip,” Experimental Brain Research, 1984.

[10] J. R. Flanagan, M. C. Bowman, and R. S. Johansson, “Control strategies
in object manipulation tasks,” Current Opinion in Neurobiology, 2006.

[11] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals
from the fingertips in object manipulation tasks,” Nature Reviews
Neuroscience, 2009.

[12] L. Sievers, J. Pitz, and B. Bäuml, “Learning purely tactile in-hand
manipulation with a torque-controlled hand,” ICRA, 2022.

[13] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating without
seeing: Towards in-hand dexterity through touch,” in RSS, 2023.

[14] G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, J. Adams, and
M. Ciocarlie, “Sampling-based exploration for reinforcement learning
of dexterous manipulation,” in RSS, 2023.

[15] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,”
in CoRL, 2020.

[16] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, 2017.

[17] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E.
Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft
optical tactile sensors with 3d-printed biomimetic morphologies,” Soft
robotics, 2018.

[18] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A
novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation,” RA-L, 2020.

[19] D. F. Gomes, Z. Lin, and S. Luo, “Geltip: A finger-shaped optical
tactile sensor for robotic manipulation,” in IROS, 2020.

[20] R. Calandra, A. Owens, D. Jayaraman, W. Yuan, J. Lin, J. Malik, E. H.
Adelson, and S. Levine, “More than a feeling: Learning to grasp and
regrasp using vision and touch,” RA-L, 2018.

[21] H. Xu, Y. Luo, S. Wang, T. Darrell, and R. Calandra, “Towards learning
to play piano with dexterous hands and touch,” in IROS, 2022.

[22] E. Smith, D. Meger, L. Pineda, R. Calandra, J. Malik, A. Romero So-
riano, and M. Drozdzal, “Active 3d shape reconstruction from vision
and touch,” NeurIPS, 2021.

[23] E. Smith, R. Calandra, A. Romero, G. Gkioxari, D. Meger, J. Malik,
and M. Drozdzal, “3d shape reconstruction from vision and touch,”
NeurIPS, 2020.

[24] S. Suresh, Z. Si, J. G. Mangelson, W. Yuan, and M. Kaess, “Shapemap
3-d: Efficient shape mapping through dense touch and vision,” in ICRA,
2022.

[25] S. Suresh, Z. Si, S. Anderson, M. Kaess, and M. Mukadam, “Midas-
touch: Monte-carlo inference over distributions across sliding touch,”
in CoRL, 2022.

[26] N. Sunil, S. Wang, Y. She, E. Adelson, and A. R. Garcia, “Visuotactile
affordances for cloth manipulation with local control,” in CoRL, 2022.

[27] J. Hansen, F. Hogan, D. Rivkin, D. Meger, M. Jenkin, and G. Dudek,
“Visuotactile-rl: Learning multimodal manipulation policies with deep
reinforcement learning,” in ICRA, 2022.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in CVPR, 2017.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[30] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, 2021.

[31] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” in CoRL, 2022.

[32] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in ICCV, 2023.

[33] C. Zhang, D. Han, Y. Qiao, J. U. Kim, S.-H. Bae, S. Lee, and C. S.
Hong, “Faster segment anything: Towards lightweight sam for mobile
applications,” arXiv:2306.14289, 2023.

[34] P. Sodhi, M. Kaess, M. Mukadam, and S. Anderson, “Learning tactile
models for factor graph-based estimation,” in ICRA, 2021.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[36] WonikRobotics, “Allegrohand,” https://www.wonikrobotics.com/, 2013.

[37] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym:
High performance gpu-based physics simulation for robot learning,” in
NeurIPS Datasets and Benchmarks, 2021.

[38] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and vision
Computing, 2018.

[39] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in CVPR, 2015.

[40] D. Morrison, P. Corke, and J. Leitner, “Egad! an evolved grasping anal-
ysis dataset for diversity and reproducibility in robotic manipulation,”
RA-L, 2020.

[41] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann,
T. B. McHugh, and V. Vanhoucke, “Google scanned objects: A high-
quality dataset of 3d scanned household items,” in ICRA, 2022.

[42] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in International Conference on Advanced
Robotics (ICAR), 2015.

[43] S. Brahmbhatt, C. Ham, C. C. Kemp, and J. Hays, “Contactdb:
Analyzing and predicting grasp contact via thermal imaging,” in CVPR,
2019.



[44] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-real
dexterous manipulation,” in CoRL, 2022.

[45] C. Bao, H. Xu, Y. Qin, and X. Wang, “Dexart: Benchmarking
generalizable dexterous manipulation with articulated objects,” in CVPR,
2023.


