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Degradation-Aware Point Cloud Sampling in Robot
Ego-Motion Estimation
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Abstract—The typical point cloud sparsification methods used
in the state estimation of mobile robots are unaware of the
perceptual degradations arising in geometrically symmetrical and
structureless environments. In these environments, failing to han-
dle geometrical degeneracies can render estimation ineffective or
even impossible. We propose a novel method for a degeneration-
aware point cloud sampling that is capable of lowering the ef-
fects of geometrical degeneracies by sampling informative points,
which can be efficiently exploited in optimization along the de-
generate directions. The proposed method is an alternative to
the commonly used sparsification methods that normalize the
density of points to comply with constraints on the real-time
capabilities of a robot. In contrast to density normalization, our
method leverages the concept of geometrical flow as an indirect
measurement of a robot’s ego-motion, exploits the shape of
commonly used loss functions, and reuses the information that
is expensively computed in previous iterations of an estimation
process. Preliminary results show that the proposed sampling
technique outperforms fine-tuned point-density normalization in
geometrically-degenerate settings, while also being 26 % faster.

I. INTRODUCTION

Spatial AI and classical methods of 3D perception utilize an
abundant amount of data as input. To cope with the abundance,
pipelines typically lower the cardinality of the input before
any other action is taken and then optionally transform the
reduced input into a feature domain. Random downsampling
and discretization (voxelization) of the data to fixed-sized 3D
cubes (voxels) remain prevalent among methods for lowering
the cardinality of 3D data.

Although voxelization maintains the spatial distribution of
the input and seems reasonable when computational tractabil-
ity is essential, it may negatively influence the performance
of algorithms, which iteratively find correspondences from the
input to some target domain. This is due to the voxelization
removing the level of detail below the fixed resolution, thus
limiting the algorithms in the utilization of fine details in their
pipeline. Therefore, voxelization is feasible with data contain-
ing high variance and salient structures. However, exploiting
the finest level of detail is crucial when coping with spatial de-
generacies consisting of geometrically symmetrical and struc-
tureless environments. Such degenerated environments include
long and narrow corridors, tunnels, or chimneys.

A promising alternative to voxel filtering is importance sam-
pling, a term adopted from early works on particle filtering and
path planning. In the context of spatial perception, importance
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sampling represents a way of downsampling the input data
such that the salient points, which are essential to any conse-
quent task, remain in the data, whereas the rest are removed.
Feature extraction is a similar concept; however, transforming
the data from input into the feature domain can be expensive,
sensitive to handcrafting, and sometimes undesired as a certain
level of detail is inevitably lost.

However, the problem of selecting data in the input do-
main is non-causal, as the knowledge about the importance
of a point in optimization is unknown before its point-map
correspondence is established. The voxelization property of
normalizing density in the input data while also maintaining
spatial distribution makes it a safe option when applied in most
state-of-the-art robotic solutions. Is that, however, the optimal
way to reduce the task’s complexity?

We propose three approaches to sampling the input data
with respect to the following metrics — 1) a measure of a
geometric flow indirectly quantifying the robot motion, 2) a
heuristic maximizing the expected point contribution, and 3)
output-to-input feedback maximizing the sum of information
value. The proposed metrics, described in detail in Sec. IV, are
deterministic and do not depend on any data-based learning
procedure. In Sec. V, we further propose a greedy algorithm
to fuse the three metrics in point cloud sampling. To experi-
mentally validate the effects, we analyze the methods in a task
of robot ego-motion estimation from 3D LiDAR point clouds.
In this task, voxelization removes the detail below the fixed
resolution, which limits the correspondences to a discretized
grid. The discretization hinders the estimation of any robot mo-
tion smaller than the resolution, making the estimation more
sensitive to correct initialization. Our experiments show that
the proposed method focuses on exploiting the structure of the
input domain and is capable of speeding up the entire pipeline,
while improving its performance in degenerated environments.

II. RELATED WORK

A. Point cloud downsampling

There are many ways to downsample input data, ranging
from binning image pixels through 2D and 3D convolution,
to random or informed sampling. As our focus is narrowed
to 3D ego-motion estimation from LiDAR data, the spectrum
of classical methods is reduced mainly to random sampling
(sometimes used in vanilla ICP) and voxel filtering, which is
the most prevalent deterministic method. A typical implemen-
tation of a voxel filter uses the Octree structure [1] or a simple
numerical discretization, such as that implemented in Point
Cloud Library (PCL) [2].

The downsampling methods have also been studied in
the context of machine learning. SampleNet [3] learns for
task-specific (classification and geometry reconstruction) point
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cloud sampling. The method in [4] learns features and selects
the points with the greatest contribution to the global max-
pooling. DGCNN [5], FoldingNET [6], KCNET [7] construct
a graph out of an unordered point cloud and downsample the
graph using a graph-based max-pooling that takes the maxi-
mum features over the neighborhood of each node using a pre-
built k-NN graph. The disadvantage of these methods is the
absence of deterministic guarantees that the sampling will be
invariant to the type of environment and that it will maximize
point relevancy for optimization.

B. Degeneracy

Geometrical degeneration can be divided into two cases —
strong and weak degeneracy. In the least common case of
strong degeneracy, the input data contain no information
whatsoever to be exploited for some degrees of freedom
(DoF). This makes some directions of the optimization under-
constrained, and constraints for these directions have to be
supplied by other means, typically with other modalities. An
example of such a solution is MIMOSA [8], which fuses
inertial, visual, and LiDAR modalities for coping with their re-
spective degeneracies. On the other hand, weakly-degenerated
data contain at least a minor set of informative points that
can be exploited for constraining any optimization direction.
An example is given in Fig. 1a, where only a small ratio of
data measures the end wall of a narrow corridor, which makes
estimation along the corridor’s main axis challenging. When
the weight of this minority is not increased relative to the
data cardinality, these points can easily get filtered out, be
marked as noise or outliers, or fail to constrain the respective
optimization direction sufficiently.

Only a few methods have been proposed to tackle the ef-
fects of weak degeneracy. A point cloud subset selection such
that the direction of the normals of the points uniformly fill
the normal-vector space was proposed in [9]. However, [9]
requires a normal of a point to be known, which is expensive
to achieve in real-time systems. Other methods utilize the
detection of degeneracy in the optimization itself. A recent
learning-based approach for detecting whether a problem is
degenerated was introduced in [10], but the most used de-
generacy detection is the older work [11], where the strength
of an optimization problem is defined by the eigenvalues of
the information matrix. AdaLIO [12] adaptively selects one of
two fixed voxel filter parametrizations. The first parametriza-
tion is set to high resolution and is used when the problem
strength at any DoF is below a degeneracy threshold [11].
In the opposite case of well-constrained problems, the second
low-resolution parametrization is used. Nevertheless, a high-
resolution voxelization may not reduce the data to a sufficient
degree for real-time computing. Greedy-based method [13],
KFS-LIO [14], and X-ICP [15] sample the residuals created
from data-to-map correspondences with respect to their contri-
bution to the optimization problem. Although this contribution
can be quantified similarly to [11], these approaches require
the correspondences to be known, which might be expensive.
Our proposed methodology focuses on sampling in the input
domain before any correspondence matching, residual compu-
tation, linearization, and optimization.

III. PROBLEM DEFINITION

In our case, a six DoF robot ego-motion estimation from
LiDAR data employs a scan-matching pipeline in its core.
Scan matching can be defined as a minimization task finding
the change in pose T∗ ∈ SE(3) between a source P = {p∈R3}
and a target Q= {q∈R3} point clouds (sets of points). In this
definition, the objective function minimizes the squared sum
of residual functions rT ∈ R3 over the two point clouds

T∗ (P,Q) = argmin
T∈SE(3)

∑
(p,q)∈CP

Q

ρ

(
||rT(p,q)||22

)
, (1)

where CP
Q represents the set of correspondence pairs from P

to Q and ρ is a robust kernel. Given an input point cloud PL,
we propose to precede the optimization problem defined in
Eq. (1) with a single-metric selection task

P = argmax
Pl⊆PL

g(Pl), subject to |Pl |> λ |PL|, (2)

where the constraint defines the minimum cardinality of the
output set by a factor λ ∈ (0,1〉 and g(·) is a metric to be
defined in Sec. V. The metric g(·) ranks the potential of a
point in bringing information to the optimization to achieve
the desired selection. By Eq. (2), the total amount of informa-
tion I (P) available in P during the optimization is I (P) ≤
I (PL). In an ideal case, the optimal selection metric yields
I (P) = I (PL). However, in real-world data subjected to noise
and inaccuracies, a feasible selection metric should minimize
I (PL)−I (P).

The selection aims to reduce the cardinality in the in-
put domain to reduce the complexity of a scan-registration
pipeline comprising iterative correspondence search, residual
computation, linearization, and optimization. Although a cer-
tain amount of information is inevitably lost during the selec-
tion, the preliminary experiments (Sec. VI) show that using
a lower-cardinality point subset may yield better convergence
performance in speed and accuracy, if the subset maximizes
the information exploitable in the optimization. The reasoning
for this arises from the implication that fewer points result in
less computation per iteration, which speeds up the process.
A faster registration pipeline thus implies a faster convergence
rate, assuming the optimum of the objective function remains
unchanged during the selection process. With the convergence
rate improved, the registration pipeline finds the global opti-
mum faster. And faster convergence can result in better results
in real-time pipelines constrained by termination criteria (e.g.,
number of iterations, error magnitude), which may stop the
optimization before the optimum is found.

IV. IMPORTANCE METRICS

We propose three different metrics g(·) as defined in Eq. (2)
— geometric flow g∆, the maximum expected value gΦ, and
information contribution gI . The algorithm for combining the
metrics is described in Sec. V, whereas the metrics are visu-
alized in Fig. 1 and described in the following subsections.

A. Geometric flow

In computer vision, optic flow represents the apparent motion
of objects in a rigid visual scene caused by the relative motion
of a camera. Inspired by optic flow, we define geometric flow
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Fig. 1: Proposed metrics quantifying the importance of points on pose-change estimation, which estimates the transformation Tk
k−1 from two

point clouds taken at two different times. (a) The point cloud Pk−1
L is given in blue , Pk

L in red , and the Eigenspace of Pk−1
L is denoted by

green →→→. The vector λxvx is a scaled Eigenvector corresponding to the axis visualized by the dashed black line. Since the opt. problem can
exploit only a few points for estimating motion along this axis, it is weakly degenerated. (b) Voxelization can remove the points important for
mitigating the degradation when the voxel size (in green) is improperly set to the environment. (c) Robot motion directly produces geometric
flow (→→→) in the environment. Multiplying the flow by the Eigenspace scales up the areas exploitable for optimizing along the degenerated
direction. (d) The MEV scales up points by their parallelism to the degenerated directions. The scheme shows an example of MEV (larger

implies greater gΦ) corresponding to the point-to-point loss function. (e) The IC scales up points by opt. contribution of the points from
Pk−1

L in their proximity (only the points contributing along the degenerated axis are shown).

g∆ as a per-pixel change in depth (or scale) caused by the
relative motion of a depth camera or a LiDAR. The geometric
flow indirectly encodes information about the robot’s velocity
and naturally behaves as a cheap and accurate edge detector.
Having a point cloud Pk

L at time k in an ordered matrix form,
we define the geometric flow at pixel (i, j) as

gk
∆
(i, j) =

∥∥∥ΓΛk−1

[
Pk

L(i, j)−Pk−1
L (i, j)

]∥∥∥
2
, (3)

with gk
∆
(i, j) being equal to zero if either Pk

L(i, j) or Pk−1
L (i, j)

is undefined or missing. The per-axis scaling factor ΓΛk−1 ∈
R3×3 represents a degeneracy-correcting factor (DCF). In-
spired by [11], we employ Eigenspace decomposition of an
information matrix Λk−1, and we novelly define DCF of matrix
Λk−1 as

ΓΛk−1 = λminΣ
−1Vᵀ, (4)

where V ∈ R3×3 is a matrix of column-wise Eigenvectors of
Λ, Σ∈R3×3 is a diagonal matrix of Eigenvalues corresponding
to the Eigenvectors V, and λmin is the minimum Eigenvalue
of Σ. Note, the k−1 indices have been omitted for simplicity.
In our case, the decomposed information matrix is given as
Λk−1 = Jᵀk−1Jk−1, where Jk−1 ∈R3×3 is the sub-matrix related
to the translation part in the Jacobian of the optimization
problem defined at time k− 1. The use of Λk−1 represents a
form of feedback that informs the input at time k about the
influence of the geometric properties of the environment on
the optimization.

In our experiments in Sec. VI, the employed pose estimation
method KISS-ICP [16] uses the point-to-point metric, which
Jacobian’s translational part is identity. For that reason, we
utilize the rotational part Jk−1 = ∑(p,q)∈CP

Q

∂rT(p,q)
∂R instead.

The objective of DCF is to compensate for low geometric
flow generated during a slow ego-motion along a degenerated
axis. In other words, DCF scales down (relatively to the worst-
constrained axis) geometric flow along the axes that are well
constrained in the opt. problem at the previous time step.

B. Maximum expected value

The maximum expected value (MEV) gΦ exploits the shape of
the loss function used in the optimization. This metric values

points by their potential to constrain degenerated optimization
directions. Since the most common loss functions utilized
in cloud-to-cloud registration are the point-to-point, point-to-
plane, and point-to-line functions, we define MEV as

gΦ(x) =
∥∥∥∥ΓΛk−1

x
||x||2

∥∥∥∥
2
, (5)

where x is a point x∈PL for the point-to-point, the normal of
a planar surface for the point-to-plane, and the unit direction
of a line for the point-to-line loss function, all represented in
the LiDAR frame. Note that, in our experiments in Sec. VI, we
target estimation without the expensive estimation of the un-
derlying surface and employ the point-to-point metric, which
requires no additional information. Projection of x onto the
Eigenspace by the DCF maximizes the potential for the high-
gΦ points to generate residuals important for axes valued by
the Eigen decomposition as degenerated. In other words, MEV
serves as a preemptive measure that greatly values the points
at which future correspondences yield the maximum potential
in generating residuals constraining degenerated axes.

C. Information contribution

During a typical iterative pipeline, the point-to-domain corre-
spondences, their corresponding residuals, and their lineariza-
tions are deleted once the process converges and a change in
robot pose is found. The geometric flow and MEV metrics
have utilized this information only in its condensed form of the
problem information matrix. The information contribution (IC)
gI is a method that further reuses expensively-computed per-
correspondence information when solving the same problem
in the previous iteration. Let Fk−1 =

{(
pi ∈ R3, Ji ∈ R3×3

)}
be a set of correspondences remaining after the convergence
at time k− 1, with Ji being the Jacobian of the i-th residual
and pi ∈ Pk−1

L being the linearization point. Then, let Xi ={
x | ||x−pi||2 < σI , x ∈ Pk

L
}

be a set of points in a neighbor-
hood of point pi within a distance of σI (m). The IC is then
given ∀Xi, ∀xi ∈ Xi as

gI(x) = max
(
gI(x),

∥∥ΣiV
ᵀ
i ΓΛk−1

∥∥
2

)
, (6)

where Vi ∈ R3×3 is a matrix of column-wise Eigenvectors of
Λi = Jᵀi Ji and Σi ∈ R3×3 is a diagonal matrix of Eigenvalues
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corresponding to the Eigenvectors Vi. The purpose of max
is to maintain the maximum gI-value for points located in
multiple Xi. Points not located in any Xi have gI equal to 0.

In other words, IC represents the maximum information
brought into the optimization at the previous iteration by a
spatial volume defined by σI . This way, IC exploits the as-
sumption that important points remain spatially close among
two consecutive point clouds.

V. IMPORTANCE SAMPLING

By having the three different metrics, we propose to redefine
Eq. (2) and simultaneously propose a solution by defining

P = argmax
P∆⊆PL

g∆(P∆) ∪ argmax
PΦ⊆PL

gΦ(PΦ) ∪ argmax
PI⊆PL

gI(PI), (7)

subject to |P∆|= λ∆|PL|, |PΦ|= λΦ|PL|, |PI |= λI |PL|, (8)

where P is the union of three subsets of cardinality given
by factors λ∆,λΦ,λI ∈ (0,1〉, which maximize one of the
respective metrics. Greedy algorithm solving Eq. (7)-(8) is
summarized in Alg. 1.

Algorithm 1 Pseudocode of the importance sampling routine
1: Input:
2: Pk−1

L ,Pk
L . point clouds at time k−1 and k

3: Λk−1 ∈R3×3 . information matrix of the opt. problem at time k−1
(translation part)

4: Fk−1 . set of correspondences at time k−1
5: σI ∈ R+ . gI influence radius (m)
6: λ∆,λΦ,λI ∈ (0,1〉 . minimum ratio of sampled points (%)
7: Begin:
8: ΓΛk−1 = EigenDecomposition(Λk−1) . Eq. (4)
9: . compute the metrics for all points in Pk

L

10: H∆ = geometricFlow
(
Pk

L,P
k−1
L , ΓΛk−1

)
. Eq. (3)

11: HΦ = maximumExpectedValue
(
Pk

L, ΓΛk−1

)
. Eq. (5)

12: HI = informationContribution
(
Pk

L, ΓΛk−1 ,Fk−1, σI
)

. Eq. (6)
13: . sample three fixed-cardinality g-maximizing subsets
14: return maxN

(
λ∆|Pk

L|,H∆

)
∪ maxN

(
λΦ|Pk

L|,HΦ

)
∪

maxN
(
λI |Pk

L|,HI
)

VI. EXPERIMENTAL ANALYSIS

To verify the proposed importance sampling methodology, we
utilize KISS-ICP [16] as the state-of-the-art implementation
of the Iterative Closest Point (ICP) algorithm. ICP is a dense
(without feature extraction) method estimating transformation
between two point clouds. ICP is sensitive to initialization,
noise, and particularly to geometrical degeneracies due to
point-to-point associations, which enables verification of the
required properties of the proposed sampling technique.

To validate against all kinds of different degeneracies, we
use an environment inspired by the experimental verification
of X-ICP [15], which is a state-of-the-art method for pose
estimation in geometrically degenerated environments. The
environment, shown together with the results of experiments
in Fig. 2, contains long and narrow corridors, sharp turns, and
a circular and square room that are challenging to rotation
estimation. In the experiments, a UAV visits all parts of the
structure and closes the loop by landing at the takeoff location.

The experiments evaluated qualitatively in Fig. 2 and quan-
titatively1 in Tab. I show that the typical pipeline of KISS-
ICP using data reduced by voxelization is capable of lower-
ing the effects of geometrical degeneracies. Nevertheless, the

1Results were obtained using EVO [17].

voxel-size parameter is environment-dependent as the estima-
tion fails for over-sparsified sampling (e.g., points voxelized
with a resolution of 60 cm in Fig. 2). The cost of higher
resolution is; however, the growing comp. time required to
iteratively find correspondences, compute residuals, linearize,
and optimize. On the other hand, the proposed importance
sampling (parametrized with λ∆ = 0.20,λΦ = 0.05,λI = 0.03)
shows promising potential by producing results comparable to
voxelization tuned to the environment. The method lowers the
degradation effects and yields the lowest drift (particularly in
the z-axis) with the fewest points used in the optimization.
The overhead for computing the metrics further pays off in the
iterative matching process, where fewer points lead to faster
convergence. Note that, the voxelization is an integral part of
the KISS-ICP pipeline; a voxelized point cloud is used in both
methods for building the map of the environment on the run.

Fig. 2: Comparison of the KISS-ICP performance in a challenging
environment containing various degenerated areas. The loop trajec-
tory starts and ends at the black cross. The trajectories show the
performance of KISS-ICP for input data either voxelized to a certain
resolution or sampled according to Alg. 1.

Method RMSE
(m)

Median
err. (m)

Avg. comp.
time (ms)

Rel. point
reduct. (%)

Voxelization (50 cm) 0.38 0.16 45.6 1
Voxelization (60 cm) 5.60 6.41 41.4 0.74
Voxelization (67 cm) 8.06 8.44 34.1 0.62
Importance sampling 0.36 0.15 33.7 0.26

TABLE I: Quantitative results for the trajectories shown in Fig. 2. The
proposed method performs comparably to the fine-tuned KISS-ICP
algorithm while sampling 4× fewer points and reducing the compu-
tational time of the entire pipeline by 26 %. Parametrization with a
similar runtime performance (voxelization to 67 cm) fails to overcome
geometrical degeneracy in a narrow corridor. The reported runtime
is for the entire estimation pipeline, including importance sampling.

VII. FUTURE WORK

Rigorous analyses of the proposed sampling have yet to be
done. As part of future work, we plan to perform ablation stud-
ies to determine each proposed metric’s individual contribution
and failure modes. Experimental comparison to state-of-the-
art point sampling techniques using datasets from different
real-world domains will also be performed to highlight the
advantages and limitations of the proposed metrics.
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