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Abstract— Perception and planning under occlusion is nec-
essary for safety-critical tasks. Cooperative planning requires
communicating the information of occluded object to the ego
agent. However, communicating rich information across mul-
tiple agents under adverse conditions and limited bandwidth
may not be always feasible. Relative pose estimation between
interacting agents sharing a common field of view can be a
computationally effective way of communicating location of
occluded objects. In this study, we use cooperative perception
to reliably estimate the current states in the reference frame
of ego agent and then predict the trajectory of the occluded
pedestrian. Experimentally, we show that the uncertainty-
inclusive predicted trajectory by ego agent using vision-based
relative pose estimation is almost similar to the ground truth
trajectory predicted by the ego agent assuming no occlusion.
The current research holds promise for uncertainty-aware
navigation among multiple interacting agents under occlusion.

I. INTRODUCTION

Modern day autonomy relies on accurate detection and
forecasting of other agents for navigation. Recently, end-
to-end forecasting pipelines were developed which take
raw sensor data and forecast the future intention of other
agents [1][2]. Typically, sensors continuously perceive the
object during forecasting. Yet, there are situations where the
object may be partially or fully occluded, rendering detection
and forecasting of such objects quite challenging. Recent
advances in communication between multiple traffic agents
have been used to address detection and forecasting under
occlusion [3][4]. In such a scenario, an object occluded
from ego agent’s field of view (FOV) is detected by other
agents such as vehicles and infrastructure and the information
is shared through vehicle-to-vehicle (v2v) or vehicle-to-
everything (v2x) communication respectively [5][6]. How-
ever, effectively communicating rich sensor information from
lidar and camera across multiple agents is expensive and
may result in high latency. To overcome this, only necessary
information such as position, orientation and velocity of
occluded object can be shared by establishing cooperative
perception between agents sharing a common field of view.
In cooperative perception, each agent recovers its own pose
based on shared visual features establishing relative orienta-
tion between communicating agents. Relative orientation is
established by a rigid body transformation with known rota-
tion and translation between a pair of communicating agents.
Once relative orientation is established, critical information
about occluded object as observed by other agents can be
obtained by the ego agent in real-time [7]. Although past
research have focused on both cooperative perception [8] and

Fig. 1: A Schematic of cooperative trajectory prediction
under occlusion where the pedestrian is visible to Connected
Agent 1 (CA1) while occluded from CA2.

relative orientation, to the best of our knowledge, cooperative
perception under occlusion for prediction and planning has
been unexplored.

In this paper, we focus on cooperatively forecasting the
trajectory of an occluded object in an uncertain scenario
based on relative orientation (see Figure 1). In the schematic,
both the connected agents CA1 and CA2 can be robots with
sensors mounted or a multi-camera setting [9]. Both the
agents share common visual features such that each agent
can recover its own pose and eventually obtain the relative
orientation of the other communicating agents. However, the
pedestrian is only visible to the CA1 and occluded from the
view of the CA2. This makes it difficult for the ego agent to
obtain the pedestrian’s current state for predicting the future
states and ensuring safe motion planning. Meanwhile, with
the established cooperative perception with CA2, CA1 can
send the occluded pedestrian’s observed trajectory in real-
time and the pedestrian’s future states can then be predicted
by ego agent through an end-to-end prediction network
[11]. Note that CA2 will receive the pedestrian’s location
in its own frame though pose recovery and rigid body
transformation and share that information with ego agent.
Our contributions are outlined below: (1) we demonstrate
that cooperative perception can be reliably used to recover
the past trajectory of the occluded object, (2) the proposed
method can accurately predict the future trajectory of the
occluded object obtained through cooperative perception.
The current research scope can be expanded to other field
such as marine and surgical robotics where robots can obtain
relative pose and navigate through occluded obstructions.



(a) First Camera Keypoints (b) Second Camera Keypoints

(c) Feature Matching

Fig. 2: Feature Description and Matching: (a-b) Detection
of keypoints (corners, blobs, edges) (c) Feature matching
between the image pair

II. PROPOSED METHOD

A. Relative Pose Estimation

For connected agents, relative pose can be established be-
tween multiple agents sharing common visual features. This
process consists of two fundamental steps; feature detection
and matching followed by pose recovery.

Feature Detection and Matching: The feature detection
algorithm finds salient points such as corners, edges or flat
surfaces in an image (Figure 2a,2b). Each feature is then
described using pixel information of a small patch around it.
Descriptors can be gradient-based (like SIFT [16], KAZE)
which rely on orientation of gradients in the patch or binary
(like ORB [17], AKAZE) which generate an unique binary
key for every feature. Once the features and their descriptors
have been located for a pair of images, feature matching is
applied based on the vectorial distance between descriptors
(see Figure 2c). Popular matching methods include the Brute
Force (BF) and FLANN-based matcher. However, outliers
may be still present with good matches which corrupt the
overall pose recovery process. Therefore, RANSAC algo-
rithm with 1000 iterations and 99% confidence has been
applied to the matches to reject any outliers.

Pose Recovery: Any point in 3D world gets registered in
the image plane through a simple transform x = PX, where
x is homogeneous image coordinate and X represents 3D
coordinates. The matrix P = K[R|t] stores camera parame-
ters, including the intrinsic camera calibration matrix (K) and
extrinsic parameters such as rotation (R) and translation (t),
establishing the pose between image pairs with a common
field of view. When two cameras capture identical features,
the 3D feature coordinates, recorded as homogeneous co-
ordinates in images x and x′ for each camera, must satisfy
x′T Fx = 0. Here, F denotes the fundamental matrix, derived
via Direct Linear Transform (DLT) based on a set of ‘n’
matches between image pair. Given the knowledge of camera
intrinsics K, the essential matrix E can be computed from F
as E = K′TFK.

Relative pose estimation between two connected agents
looking at the same visual features can be achieved through
the singular value decomposition of the Essential Matrix
E into rotation matrix R ∈ R3×3 and translation vector
t ∈ R3×1. E = [t]x R. The rotation matrix can be further
transformed into corresponding Euler angles [ψ, θ, ϕ], unam-
biguously. However, the essential matrix E is scale-invariant
and the absolute distance can not be recovered. Therefore,
true distance between cameras, dtrue is provided to recover
the scale factor for translation vector t. Rotation matrix and
translation vector can facilitate coordinate transformation of
any object in the ego agent’s frame of reference.

B. Probabilistic Trajectory Prediction

Cooperative perception enables ego agent to obtain the oc-
cluded object’s states and then predict the future trajectory of
the occluded object. Since, deterministic trajectory prediction
of occluded objects can be error-prone, we probabilistically
predict the future trajectory with uncertainty bounds for more
robustness. This uncertainty-inclusive trajectory prediction
can enable safer and more reliable motion planning [14] [15].
For deep learning based trajectory prediction models, some
of the popular techniques to approximate the uncertainty
include Monte Carlo (MC) dropout [18] or deep ensembles
(DE) [19]. In this paper, we use MC dropout as it offers
uncertainty estimates without significant changes to the neu-
ral network (NN) architectures. Specifically, MC Dropout
is applied during inference and it introduces stochastic
dropout of weights at each layer with some probability,
Bernoulli(pi). The inference process is repeated for N times
for the same input, x∗ to generate a distribution of outputs
{y∗1 , y∗2 , ..., y∗N}. The mean and the variances of the distribu-
tion can then be computed from the obtained samples.

Encoder Decoder Model In this paper, we design an LSTM-
based encoder-decoder architecture [10] to forecast pedes-
trian trajectories over varying time horizons. The encoder
transforms the input trajectory sequence {X1,X2, ...,XT }
for T time steps, into an encoded space vector ’e’ using a
nonlinear function, i.e. e = g(x). An ablation study revealed
the advantage of encoding both the position and velocity,
X = {x, y, u, v}, over just encoding the position. This
encoded information is subsequently used by the decoder
to predict future states {XT+1,XT+2, ...,XT+F }. The NN
predicts the future position of pedestrians x̂ and ŷ. During
inference, MC dropout with probability p is applied to infer
the distribution for future trajectory estimates.

III. EXPERIMENTS

A. Cooperative Perception

For establishing cooperative perception and obtaining the
relative orientation in real-time, we placed two depth cameras
with some known orientation as shown (Figure 3a). Multi-
camera grab with software synchronisation was performed to
ensure that both the cameras capture images simultaneously.
Camera 1 is a part of CA1 while camera 2 is mounted on



the ego agent (CA2). Each camera was calibrated using a
standard 9” x 7” checkerboard pattern to obtain the camera
intrinsics, K (Figure 3b). Both the cameras were exposed to
almost similar visual features, albeit from different perspec-
tive owing to the location and orientation of each camera.
The different perspective view as seen from each camera
has been represented in figures 3c and 3d respectively.
Images are transformed into gray scale and relative pose
estimation is obtained based on the steps mentioned in Sec.II-
A. Common features are matched in both images (Figure
3e). Further, with camera intrinsics, the fundamental matrix,
F and essential matrix, E are obtained.

(a) Camera Orientation (b) Calibration

(c) First Camera (d) Second Camera

(e) Feature Matching

Fig. 3: Relative pose estimation between two cameras with
common visual features

For the current experiment, the ground truth relative orien-
tation represented using Euler angles was obtained directly
from the internal gyroscope and accelerometer of the camera.
Since, the cameras are on a flat surface, the roll and pitch
angles were negligible while the ground truth yaw orientation
was 19.12◦. Further, the true distance between cameras, dtrue
was also measured to estimate the exact scale =

dtrue
∥t∥

of the

translation vector t. We have tabulated the results for relative
pose estimation (Tab. I). The average feature descriptors
on each image along with the total good matches for the
image pair were considerably high with a low matching time
of 0.54 seconds to obtain the fundamental matrix F. The
experimentally evaluated rotation matrix R3x3 and translation
vector t3x1 between the cameras are below.

R =

 0.927 −0.0447 0.370
0.0233 0.997 0.062
−0.372 −0.048 0.926

 t =

1.1630.066
0.040

 (1)

The rotation matrix R can be converted to Euler angles,
rpy = [1.44, -3.018, 21.878] closely matches the ground

Ground Truth rpy = [1.31, -1.767, 19.12 ]
Average Estimate rpy = [1.44, -3.018, 21.878]

Average Feature points 1290
Good Matches 128
Matching Time 0.54 secs

TABLE I: Results for Relative Orientation

truth orientation obtained from imu pose data within the
camera (Tab. I). The rotation matrix is non-degenerate as
the diagonal elements of the matrix R are close to identity.

Figure 4a represents the pedestrian trajectory in CA1’s ref-
erence frame. We compute the transformation of pedestrian
states to CA2’s reference frame using the estimated relative
orientation between cameras [R|t]. Since, the essential matrix
E = KT

1 FK2 computes the relative orientation of the second
agent with respect to first agent, we use inverse rigid body
transformation, [X′,Y′,Z′]

T
= RT × ([X,Y,Z]

T − t)
to transform the pedestrian trajectory from first camera
[X,Y,Z] to second camera’s [X′,Y′,Z′] reference frame
(Figure 4b). Figure 4b, 4c represent transformed trajectory
and ground truth trajectory in the second agent’s reference
frame. The plots show that average Euclidean between the
trajectories is minimum. Thus, using cooperative perception,
one can reliably estimate the relative orientation between two
CAs and use that information to obtain the location of any
occluded object in its own frame of reference.

(a) CA1 view (b) Transformed (c) CA2 View

Fig. 4: Pedestrian trajectory in the frame of reference of (a)
CA1 (b) Transformed trajectory of first camera using relative
pose (c) CA2 assuming no occlusion.

B. Uncertainty-Inclusive Trajectory Forecasting

From the same orientation of cameras (Figure 3b), simul-
taneous object detection and tracking of the pedestrian was
carried using a simple Mask R-CNN [21]. The object detec-
tion module accurately classifies and tracks the pedestrian
providing 3D world coordinates for position and velocity in
real-time. Figure 5a, 5b represent the tracking of pedestrian
from two different perspective as seen by individual camera.
The trajectories were collected with the camera recording
at 30 frames per second for a duration of 8 seconds. The
sampling time is set at 12 frames such that the camera obtains
the object’s position and velocity every 0.4 seconds. Every
single trajectory with the duration of 8 seconds results in 20
{x, y, u, v} samples, out of which 8 samples (3.2 secs) rep-



(a) CA1 view (b) CA2 view

Fig. 5: Simultaneous Object detection and tracking of the
pedestrian from two cameras having some relative orientation

(a) CA1 camera coordi-
nates

(b) CA1 camera
transformed coords

(c) CA2 camera co-
ordinates

Fig. 6: Uncertainty-inclusive trajectory prediction

resent past trajectory while 12 samples (4.8 secs) represent
the ground truth which will be used to validate against the
NN prediction. The weights of the NN model are trained on
publicly available datasets namely ETH[22] and UCY[23].
End-to-end training was carried out minimising the Gaussian
NLL loss with Adam optimizer and a learning rate of 1e−3.
NN model was trained for 150 epochs with a batch size of
32. The model was compiled and fit using train and test data.
During real-time inference, only model parameters such as
trained weights and biases were considered which makes the
inference process computationally cheap.

In figure 6, we show the uncertainty-inclusive prediction
for the pedestrian trajectory as observed by the first camera.
The model takes 8 input states (•) to predict 12 states into
future. ▲ represents the actual ground truth trajectory of
the pedestrian. Further, the plot shows the mean predicted
path (♦) alongwith the 1Σ covariance ellipse to quantify
uncertainty during prediction. The plot shows that the ADE
between predicted NN state estimate and ground truth is
small with the ground truth lying within the 1Σ covariance.

In order to test the reliability of the cooperative perception
during trajectory prediction, we transform the coordinates
of the original trajectory in CA1’s reference which includes
both the input and ground truth states to the CA2’s frame
using rigid-body transform. The transformation was applied
to the position coordinates, {x, y} and the transformed trajec-
tory was used for prediction. Figure 6b represents the trajec-
tory prediction for transformed coordinates of the CA1 in the
CA2’s reference after applying relative pose transformation.
Meanwhile, figure 6c represents the trajectory prediction for
the original trajectory of the pedestrian as seen by CA2

assuming there is no occlusion. The transformed coordinates
as well as prediction of the future states for the pedestrian in
figure 6b closely matches the original trajectory in figure 6c.
To quantify the dissimilarity between probabilistic predicted
states, we computed the Kulback-Leibler (KL) divergence
at each future time, {XT+1,XT+2, ...,XT+F }. Assuming, q
∼ Nk(µq,Σq) and p ∼ Nk(µp,Σp) represent the bivariate
distribution of future predicted states between figure 6b and
6c respectively at any future time T+F , then KL-divergence
is:

KL(p||q) = 1

2
[log

|Σq|
|Σp|

−d+tr(Σ−1
q Σp)+(µq−µp)

TΣ−1
q (µq−µp)]

(2)
where d=2 for a bivariate distribution. Similarly, the Shannon
entropy which signifies the information of a true distribution
is represented as H(p) = 1

2 log((2πe)
ddet(Σp)). In order to

describe the distribution q at each state, we need KL(p||q)
bits of more information over the true distribution H(p). In
Fig.7, results indicate that the KL-divergence reduces with
time which shows that the predictive distributions become
more and more similar between the trajectories. Further,
KL(p∥q)
H(p) which shows how much extra bits of information

would be required if we know the true distribution, p in-
creases. Overall, our results show that cooperative perception
and trajectory prediction can be reliably combined in adverse
scenarios like occlusion producing almost similar results to
the ground truth predictions assuming there is no occlusion.

Fig. 7: KL divergence and shanon entropy, H(p) for predicted
states.

IV. CONCLUSION

In this paper, we show the importance of combining co-
operative perception for obtaining relative pose estimation
and trajectory prediction under occlusion. First, we showed
how cooperative perception can be utilised by two cameras
sharing common visual features to obtain the accurate rela-
tive orientation between them. We also performed pedestrian
trajectory tracking in one camera’s frame of reference and
transformed the coordinates using relative pose to another
camera’s frame. Our results show that trajectory transfor-
mation followed by prediction from another agent’s frame
of reference was almost similar to the prediction results in
the original camera’s reference assuming no occlusion. This
shows cooperative perception and trajectory forecasting can
be combined for prediction and planning under occlusion.
In future, the research can be extended to dynamic pose
estimation where the ego agents can establish relative pose
through visual odometry and simultaneously forecast trajec-
tory of occluded object.
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