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Abstract

We introduce a model developed for monocular 3D ob-
ject detection with an emphasis on inter-object estimation.
Inter-object estimation, for example, of the relative pose be-
tween objects, allows a self-driving car to better understand
the behavior of road users in the surrounding environment,
which is essential for realizing automated driving that is
both safe and consistent with the expectations of the local
traffic. Furthermore, we observe that the inter-object es-
timation is invariant to viewpoint changes and is intuitive
to understand from vision signals. Combining the architec-
ture of transformers and graph networks, our model learns
inter-object features from images to better model the inter-
object relations. We further propose new metrics to eval-
uate inter-object estimation. Through experiments on the
nuScenes dataset, our model outperforms the baseline in
both 3D object detection and inter-object estimation.

1. Introduction

For self-driving cars, knowing the pose of objects in the sur-
rounding environment allows safe navigation without crash-
ing into obstacles. However, safety is not the only require-
ment for self-driving. Since self-driving cars are expected
to operate in a traffic environment with human-driving ve-
hicles before they completely replace human-driving, it is
important for self-driving algorithms to accommodate the
human-driving conventions, which may change spatially
and temporally. For example, in a highway car-following
scenario, a self-driving car is expected to maintain a head-
way (measured in distance and/or time) similar to other ve-
hicles, which changes depending on the geographic location
and the time of the day. Failure to observe and adhere to
the local consensus of the traffic could result in discomfort
and safety hazards for both the self-driving car and the sur-
rounding traffic. Such an ability to blend-in the local traffic
with similar driving behaviors to the average human drivers
is called roadmanship in literature [7, 19, 26]. It requires

Figure 1. Inter-object relative poses is subject to accumulated error
from the individual estimations. In Fig. 1 (a), a 5% error in the
estimated distance from ego-vehicle to two vehicles can result in a
15% error in the estimated distance between those two vehicles. In
this work, we focus on the inter-object estimation, as highlighted
in red in Fig. 1 (b), which is invariant to ego-vehicle’s viewpoint.

an understanding of the interaction among the road users
in the environment, for which an accurate estimation of the
relative pose between the road users is essential.

However, estimating the relative pose between the road
users is non-trivial. Estimating the pose of individual ob-
jects and calculating the relative pose through subtraction
could lead to magnified error. An illustration is shown
in Fig. 1 (a). Regarding this, we propose to model the
inter-object relative poses in the monocular 3D object de-
tection network. With the perception algorithm built with
an awareness of object relations, we expect this to help the
self-driving algorithms achieve better roadmanship. On the
other hand, there could be some advantages of directly esti-
mating the relative poses. First, it is intuitive from vision
to tell the relative pose between two vehicles if they are
close to each other, for example, when they are platooning
or parked side-by-side in a parking lot. Second, while the
absolute pose estimation heavily depends on the camera’s
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intrinsic and extrinsic parameters, the projective geometry,
and the depth estimation of the model, the inter-object rela-
tive pose is viewpoint-invariant, as illustrated in Fig. 1 (b),
and thus could circumvent the complexity brought by the
camera geometry and benefit the network performance [29].

Overall, this work has the following contributions:
• We propose viewpoint-invariant inter-object relative pose

estimation as a new learning target for the monocular 3D
object detection task.

• We develop an inter-object estimation module that im-
proves the monocular 3D object detection, the relative
pose estimation, and the behavior understanding.

• We propose new metrics to evaluate the inter-object rela-
tive pose estimation.

2. Related work
2.1. Network architectures

We can classify the monocular 3D object detection models
regarding the network architecture. The first type is based
on fully convolutional neural networks [10, 17, 28]. The in-
put RGB images are processed by the convolutional layers,
and the feature maps embedding the desired information to
be estimated gradually emerge. The second network type is
based on the transformer architecture [16, 24]. For monoc-
ular 3D object detection, the transformer module is mainly
used in the decoder stage, where the objects are modeled
as queries. The queries start from an image-independent
initialization. They gradually gather information from im-
age features and exchange information among the queries
through the attention mechanism. In the end, each query
predicts the class, location, size, and other target properties
of an object. The query-based object modeling allows for
object-centric non-local information gathering, which has
become increasingly popular recently.

2.2. Geometric constraints

Since monocular 3D object detection is an under-
determined problem, another important aspect of the mod-
els is how they leverage geometry constraints to regularize
the estimation. Many existing methods have explored in-
corporating various geometric constraints to refine the esti-
mation or assist the network training. Some of the represen-
tative geometric constraints are listed here:
• Prior object shape models [1, 13, 18]. In earlier work,

CAD models of objects are commonly used, which pro-
vides prior knowledge on the shape and size of objects,
and the network predictions are encouraged to align with
the CAD models.

• Dense shape prediction [2, 5, 11]. Other than CAD mod-
els, the object shape can also be learned by the network
itself. The shape, together with the pose, should render
an appearance consistent with the actual image.

• Projection of 3D bounding box vertices [14, 15, 27, 28].
Predicting the 2D projection of the vertices of the 3D
bounding boxes in the image is common in monocular 3D
object detection. These projected points carry informa-
tion about the distance and pose of the actual 3D bound-
ing boxes.

• Road plane [8, 23]. Most outdoor driving scenes are ap-
proximately flat roads. Thus, some work assumes that all
objects lay on the same 2D plane and use it as a constraint
to refine the 3D detections.

• Relative pose [6, 25]. Relative pose between objects is
also explored in existing work as a constraint for the in-
dividual pose of objects. However, the formulation in ex-
isting approaches depends on the camera configurations,
thus not viewpoint invariant.

2.3. Equivariance and invariance

Due to the absence of depth information in the monocular
images, explorations of 3D equivariance and invariance is
very limited in monocular 3D object detection. The ma-
jority of them focus on scale-invariance and equivariance
[12, 21] of the 2D feature map and build an approximate
inverse-proportional relation between the object depth and
2D appearance scale. [4] is closest to us as it investi-
gates the viewpoint-equivariance by augmenting more cam-
era viewpoints during training. In comparison, our target is
viewpoint-invariant, which is simpler and less costly.

3. Methodology
3.1. Overview

We develop a monocular 3D object detection network
with inter-object estimation capacity. Our network is built
based on the state-of-the-art model Focal-PETR [22]. An
overview is illustrated in Fig. 2. It is a transformer-based
architecture, which uses queries to represent objects, thus
making it straightforward to model the inter-object relations
by taking the pair of involved queries as input.

3.2. Inter-object estimation module

Our inter-object estimation module is built upon query-
based object representations. The basic idea is to input
pairs of object-query features and yield inter-object estima-
tions. The inter-object estimation module comprises four
parts, object-pair feature fusion, inter-object regression,
inter-level feature refinement, and differentiable pose-graph
optimization. Due to the quadratic complexity in comput-
ing the pair-wise features, we filter the object queries based
on the classification score and only pass the positive predic-
tions into the inter-object estimation module.

Object-pair feature fusion A pair of objects is defined
as a reference object i and a target object j, with their poses
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Figure 2. The overview of our network design. It follows the
overall architecture of Focal-PETR [22] with our proposed inter-
object estimation module on the right, highlighted in the dashed
box. We only illustrate two levels of attention modules and the
corresponding inter-object estimations for simplicity. The actual
implementation of the model has six levels.

Pi, Pj ∈ SE(3). We denote the transformation,

Pij = P−1
i Pj , (1)

as the relative pose for the object pair. The relative
pose is irrelevant to the observer (ego vehicle) and thus is
viewpoint-invariant.

For each pair of objects, we use a spatial alignment mod-
ule as in [22] to obtain the inter-object features,

Fij = Tw(Fi) ∗ Fj + Tb(Fi), (2)

where Fi, , Fj ∈ Rc are features of the object queries, Tw
and Tb are MLP mappings: Rc → Rc, and ∗ denotes the
element-wise multiplication.

Inter-object regression Given the inter-object features,
the inter-object regression is conducted using MLPs. Be-
sides the relative pose, we define a correlation mask to high-
light the object pairs that are closely correlated. Our obser-
vation is that the relative pose between objects is easy to
perceive from images only when the objects are close to
each other. We define the correlation mask as follows:

Mij = M class
ij ∗Mdistance

ij , (3)

where

M class
ij =

{
1 if Ci = Cj ,

0 otherwise,
(4)

in which Ci is the classification label of object i.
Denote P ∈ SE(3) as P = (xP , yP , zP , θP ), where θ is

the yaw angle (object pitch and roll are assumed to be zero),

then we have

Mdistance
ij =

{
1 if dPij ≤ dthreshold,

0 otherwise,
(5)

where dPij
=

√
x2
Pij

+ y2Pij
+ z2Pij

, and dthreshold is to
filter out the object pairs that are far away.

We use an MLP to regress the correlation mask Mij .

Inter-level feature refinement The above object-pair
feature fusion and inter-object estimation are conducted af-
ter each level of the attention blocks. We can propagate the
earlier layers’ features to the later ones to enhance the repre-
sentation. We use MLPs to process the object-pair features
from the last level and add them to the object-pair features
of the next level. We take the union of positive queries at
different levels for inter-object estimation so that the inter-
object features can be propagated along different levels.

Differentiable pose-graph optimization With relative
pose estimation between objects, we can build a pose graph
among the objects. Given a set of objects with estimated
pose P̂i, i ∈ {1, ..., n} and their predicted correlation mask
M̂ij and relative pose P̂ij , the optimization variables are the
poses of the objects, and the constraints are the individu-
ally estimated poses and the relative poses. Only the subset
of relative pose constraints with predicted correlation mask
M̂ij > 0.5 are included as edges in the pose graph. The
network regresses a weight vector for each of the individual
object-pose estimation (Ŵi) and the relative pose estimation
(Ŵij) to weight the cost terms. The pose-graph optimiza-
tion is made differentiable using the Theseus library [20],
so that the regressed pose, relative pose, and weights are
supervised by the optimized object poses P̃i’s:

{P̃i}i∈G = argmin
{Pi}

∑
i

Ŵir
2(Pi, P̂i)+∑

i,j

Ŵijr
2(P−1

i Pj , P̂ij), (6)

where G denotes the subset of object detections with as-
sociated edges. r2 denotes the squared residual function:

r2(P, P̂ ) = [(xP − xP̂ )
2, (yP − yP̂ )

2, (zP − zP̂ )
2,

(round(θP − θP̂ ))
2], (7)

where round is to round the angular error to [−π, π).

Loss functions We follow the same loss functions used
in Focal-PETR [22]. Furthermore, we use L1 loss to su-
pervise P̂ij and P̃ . Yaw angle θ is parameterized with
(sin(θ), cos(θ)) in the regression and loss function. M̂ij

is supervised using focal loss.

3



Table 1. Results on the nuScenes [3] validation set. ↑ means higher is better. ↓ means lower is better. The best is highlighted in bold.

Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAV E ↓ mAAE ↓ mARTE ↓ mAROE ↓ mARPE ↓
Focal-PETR [22] 0.363 0.330 0.758 0.280 0.685 1.155 0.303 0.437 0.245 0.577
Ours 0.384 0.334 0.757 0.276 0.672 0.879 0.245 0.424 0.237 0.561

Table 2. Ablation study on the inter-object estimation targets.

Mask Distance Relative pose NDS ↑

× × × 0.363
✓ × × 0.380
✓ ✓ × 0.382
✓ × ✓ 0.384

4. Experiments
4.1. Dataset and metrics

We validate our approach on the large-scale autonomous
driving dataset, nuScenes [3]. Besides the official metrics
of nuScenes to evaluate the 3D object detection, we further
propose new metrics to evaluate the accuracy of inter-
object relative pose estimations. Specifically, mARTE,
mAROE, mARPE (mean Average Relative Translation
/ Orientation / Pose Error) are proposed. First, we define
the relative translation from object i to object j, RTij =
[xj − xi, yj − yi, zj − zi] ∈ R3, and relative orientation,
ROij = round(θj−θi) ∈ [−π, π). Then, the relative trans-
lation / orientation errors RTEij and ROEij are defined as:

RTEij =
∥∥RT est

ij −RT gt
ij

∥∥
2
, (8)

ROEij =
∣∣round(ROest

ij −ROgt
ij )

∣∣ , (9)

where est and gt denote the estimation and ground truth, re-
spectively. We also define the relative pose error to combine
the translation and orientation errors together, RPEij =√

RTE2
ij +ROE2

ij . Finally, the mean average operation

(e.g., {RTEij}ij → mARTE) is defined similarly as the
true-positive metrics in nuScenes (e.g., mATE), which is to
take the average of the cumulative mean at each recall level
per class and finally take the mean overall the classes. No-
tice that the above inter-object metrics are symmetric, i.e.,
RTEij = RTEji, and they are defined in the ego-vehicle’s
frame. Thus, each pair of objects is counted only once in
the metrics. The pair-wise confidence is defined as the con-
fidence of the object with lower confidence in the pair, and
the errors of all pairs with the same lower-confidence object
are averaged before calculating the Precision-Recall curve.

4.2. Implementation details

We use the ResNet-50 [9] backbone with input image size
704 × 256. All networks are trained with batch size 16 for
24 epochs across 8 NVIDIA A40 GPUs. dthreshold = 20m.

4.3. Experimental results

We present the quantitative result in Tab. 1. The numbers
are evaluated on the nuScenes validation set. Our approach
achieves superior performance in all reported metrics. The
improvement in the mAP metric shows that the 3D local-
ization of the detection objects is improved. Moreover, an
interesting outcome is that the mAV E and mAAE drop
considerably with our method. While the relative pose es-
timation seems not to be directly related to the velocity es-
timation or the attribute (e.g., moving vs. parked) estima-
tion, the improvement is not a coincidence. Notice that our
model predicts a correlation mask to highlight the object
pairs of the same class within a short distance. They are
likely to have similar velocities and attributes, for exam-
ple, all platooning on a highway or parked on the sideway.
It implies that the inter-object estimation module enhances
the similarity of the features of object pairs with high cor-
relation, encouraging more consistent velocity and attribute
predictions between the pairs. It shows that the inter-object
estimation improves the understanding of objects’ behavior.

The evaluation of the inter-object relative pose estima-
tion is presented in the last three columns of Tab. 1. Our
proposed method achieves lower error, indicating that the
estimated object poses from our method are more consis-
tent regarding their relative poses.

Ablation study We further show the effect of different
inter-object estimation targets on the overall performance
in Tab. 2. It shows that mask prediction is very important in
inter-object estimation. Adding this single sub-task consid-
erably improves the overall performance. The distance and
relative pose estimation can further improve performance.

5. Conclusion

We introduce inter-object estimation to monocular 3D ob-
ject detection. By regressing the correlation and relative
pose in object pairs and optimizing the obtained pose graph,
we improve over the competitive baseline model, Focal-
PETR, in 3D object detection, relative pose estimation, and
surprisingly, the behavior understanding of the objects. The
ablation study validates the effect of each inter-object esti-
mation target in the overall performance improvement. We
believe that our perception solution can better prepare the
self-driving algorithms to adapt to the behavior of the sur-
rounding road users and achieve improved roadmanship.
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