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Abstract— Multi-robot target tracking is the problem of
actively planning the motion of a team of coordinating robots
such that they can track and follow the targets. Traditional
approaches often focus solely on optimizing the tracking ac-
curacy, neglecting potential environmental hazards that can
induce system faults such as sensor or communication failures
on the robots. In this paper, we focus on solving multi-robot
target tracking in an adversarial environment with two types
of dangerous zones—sensing danger zone and communication
danger zone. Robots’ sensors are at the risk of being damaged
if robots are in the sensing danger zone, while inter-robot
communication signals can be jammed if robots are in the
communication danger zone. The positions of both types of
zones are uncertain and assumed to follow a Gaussian dis-
tribution. We model the risk of attack in dangerous zones as
probabilistic constraints, and propose an optimization program
that optimizes the tracking performance while ensuring robots’
safety through such constraints. The probabilistic constraints
are linearly approximated so that the optimization program
becomes tractable. We demonstrate the efficacy of the proposed
approach through extensive simulations.

I. INTRODUCTION

An increasing amount of research effort has been ded-
icated to multi-robot active target tracking, which refers
to the problem of planning the (joint) motion of a team
of robots such that they could optimize certain tracking
objectives. However, the practical deployment of multi-robot
target tracking remains challenging, as the environment or
targets themselves can be dangerous or adversarial. Robots
may be subject to attacks resulting in sensor damage,
communication interruption, or other system faults. There-
fore, tracking performance is no longer the only objective
to achieve, as the robots must also pay special attention
to secure themselves from failures or attacks. Previous
work [1]–[4] closely studies multi-robot target tracking under
the adversarial setting. Although awareness of risk and
resiliency have been investigated in these works, the worst-
case assumption is often adopted, leading to an excessively
conservative decision-making paradigm. In this paper, we
alternatively consider risk in a probabilistic setting and
model the safety requirement on robots, i.e. the risk level
must not exceed a threshold, using chance-based constraints.
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These chance-based constraints do not have closed forms
in general and are thus challenging to compute directly. We
obtain inspiration from how motion planning algorithms deal
with uncertainty [5, 6], and apply approximation techniques
when evaluating such probabilistic constraints to alleviate the
computational difficulty.

Our major contributions are:
• We model the problem of multi-robot active target

tracking with the existence of uncertain dangerous zones
as a novel chance-constrained optimization.

• We approximate the probabilistic constraints to make it
computationally tractable and simplify the optimization
program.

• The proposed method is then extensively verified
through simulations.

II. PROBLEM FORMULATION

We consider the active target tracking problem with M
robots and N targets in the environment with two types
of dangerous zones, where each type of zone performs one
kind of adversarial attack on the robots. We aim to enable
the robots to minimize their estimation uncertainty of the
target positions, while simultaneously securing themselves
from attacks. In the upcoming sections, we first introduce the
definitions of dangerous zones and then formulate the multi-
robot target tracking as a chance-constrained optimization
problem. For the rest of this paper, we will use [N ] to denote
the set {1, 2, · · · , N} for an arbitrary N ∈ N+.

A. Sensing danger zone

We assume that there are p disk-shaped sensing danger
zones in the workspace, denoted as {S1, · · · ,Sl, · · · ,Sp}.
At the center of each sensing zone, there exists a stationary
sensor from the enemy. Whenever a robot enters a sensing
zone, it will be detected and its own sensor suite is subject
to attacks. To protect our robots, we want to restrict the
probability that the robots enter sensing danger zones.

We assume sensing danger zones to be static and uncertain.
Specifically, the hostile sensor zone Sl is defined with a
center position xSl

∈ R2 and boundary radius rl, where
xSl

follows a known Gaussian distribution N (µSl
,ΣSl

). For
the i-th robot at position xi, the probability of entering any
sensing zone and being detected should be upper bounded
by a chance constraint

Prob(xi ∈ Sl) ≤ ϵ1,∀i, ∀l, (1)

where ϵ1 is a pre-specified parameter. Equivalently, robot is
within the danger zone when the distance between it and
the hostile sensor is no greater than radius of the zone,



i.e., ∥xSl
−xi∥ ≤ rl. Hence, the probability in Eq. 1 can be

computed as:

Prob(xi ∈ Sl) =

∫
∥xSl

−xi∥≤rl

pdf(xSl
− xi)d(xSl

− xi),

=

∫
∥wi,Sl

∥≤rl

pdf(wi,Sl
)dwi,Sl

,

(2)
where wi,Sl

= xSl
− xi. The probability is an integral of a

multivariate Gaussian random variable without an explicit
closed form. To address this issue, we will linearize the
region {w|∥wi,Sl

∥ ≤ rl} and compute an upper bound of the
probability in Eq. 2. The details are introduced in Section III.

B. Communication danger zone

Communication danger zones are the ones where “jam-
ming” happens. We assume all communication danger zones
to be disks and stationary throughout the whole process.
There exists a hostile station at the center of each communi-
cation danger zone. If a robot enters a communication danger
zone, the station can send noisy, deceiving signals to jam the
robot, such that the robot fails to distinguish between the
message from its neighboring teammates and the jamming
signals. Since jamming reduces the reliability of inter-robot
communication, we consider how to reconfigure the robots’
positions to discourage jamming effect.

Consider there are q communication danger zones as
{C1, · · · , Ck, · · · , Cq} in the environment. We use xCk

∈
R2, k ∈ [q] to represent the position of the jamming station
in communication danger zone Ck. Similar to sensing danger
zones, we also assume xCk

is a random variable following
a known Gaussian distribution, xCk

∼ N (µCk
,ΣCk

),∀k. ψi

denotes the set of neighbors of robot Ri, which are basically
teammates within a prespecified communication range.

Without loss of generality, we consider a robot i inside
a communication danger zone Ck. The jamming station can
attack the communication channel between robot i and its
neighbors j ∈ ψi. Let the distance between robot i and j be c,
and the distance between robot i and the jamming station of
Ck be a ∈ R. We assume a lower-level controller guarantees
robot would not collide with its teammates, and thus c ∈
R+. We encode the chance that robot i successfully receives
the messages passed from its neighbor j, even though under
jamming attack, using a metric called “Signal-to-Jamming
Ratio”, defined as

γijk =
a

c
, (3)

and we require γijk ≥ δ2, where δ2 is a hyper parameter. To
increase the chance that robot i reliably receives information
from j, it is desirable for robot i to be closer to robot
j and away from the jamming station at xCk

. Therefore,
the ratio between a and c should be lower bounded. We
employ a chance-based constraint to ensure robots’ safety in
communication danger zones:

Prob(
a

c
≥ δ2) ≥ ϵ2,

⇐⇒ Prob(
a

c
< δ2) ≤ 1− ϵ2.

(4)

Let xi, xj , xCk
∈ R2 denote the positions of robot i,

robot j, and the jamming station in Ck, respectively. The
probability in Eq. 4 can be further computed as

Prob(
a

c
< δ2) = Prob(a < δ2c),

=

∫
∥xCk

−xi∥<δ2c

pdf(xCk
− xi)d(xCk

− xi),

=

∫
∥vi,Ck

∥<δ2c

pdf(vi,Ck
)dvi,Ck

,

(5)
where vi,Ck

= xCk
− xi. Note that Eq. 5 integrates the

probability density function of a multivariate Gaussian vari-
able vi,Ck

across a disk that is centered at the origin and
has radius δ2c. For robot i, each of its neighbors will form
a corresponding constraint. We define c∗ = max{cj |cj =
∥xi − xj∥, j ∈ ϕi}, which corresponds to the radius of the
largest circle across those we perform the integration in Eq. 5
for robot i on. To protect robot i from jamming attack in
dangerous zone Ck, we require

Prob(a < δ2c) ≤ Prob(a < δ2c
∗) ≤ 1− ϵ2. (6)

Directly computing Eq. 6 is challenging and we will further
explain the approximation approach in Section III.

C. The chance-constrained optimization program

We present a chance-constrained optimization program
in Eq. 7 to solve the optimal actions of all the robots at
every time step t. The objective function is a weighted
sum of tracking uncertainty, as encoded by the trace of
the estimation covariance matrix, and control efforts of the
whole team. Weights for the two pieces are w1 and w2,
respectively. Chance-based constraints are imposed to restrict
the probability that robots are attacked in sensing and/or
communication danger zones.

min
ui,t,xi,t+1,∀i

w1 · Tr(Pt+1) + w2 ·
m∑
i=1

∥ui,t∥

(7a)
s.t. xi,t+1 = fi(xi,t,ui,t),∀i ∈ [M ], (7b)

Prob(∥xSl
− xi,t+1∥ ≤ rl) ≤ ϵ1,∀i ∈ [M ], ∀l ∈ [p],

(7c)
Prob(aik < δ2c

∗
i ) ≤ 1− ϵ2,∀i ∈ [M ], ∀k ∈ [q]. (7d)

Eq. 7c is the constraint preventing robots from entering the
sensing danger zone. Eq. 7d is the constraint to preserve
effective inter-robot communication in communication dan-
ger zones. We use aik to represent the distance between
robot i and the jammer of communication danger zone Ck,
and c∗i to represent c∗ value of robot i, both calculated
using robot i’s position at time step t + 1. Eq. 7b is the
dynamics constraint for each robot. In this work, we use
single-integrator dynamics for all robots.

Optimization in Eq. 7 is computationally challenging to
solve, since it computes trace of the covariance matrix
Pt+1 at time step t + 1 in the objective function. This
requires propagating an Extended Kalman Filter (EKF) for



one step. The measurement noise covariance matrix we use
in the update step of EKF is a nonlinear function of the
distance between robots and targets, i.e. approaching the
targets reduces noise level. As such, the objective function is
non-convex. The probabilities in Eq. 7c and Eq. 7d are also
nonconvex and cannot be obtained directly. We introduce
our method of simplifying this optimization problem in the
next section. Note that whenever the robots move to a new
state, they run an EKF to update their estimates of the target
positions.

III. APPROACH:APPROXIMATE CHANCE CONSTRAINTS

The probability in both Eq. 2 and Eq. 5 requires computing
the integral of multivariate Gaussian variables across disk
regions, which cannot be done easily with a closed form. To
resolve this issue, we approximate the probabilities using an
upper bound and transform the chance-based constraints into
deterministic ones.

We firstly review the following lemmas in [5, 6]. Let x ∈
Rnx be a random variable that has a Gaussian distribution.
We consider a general probablistic constraint of the form,
Prob(a⊤x ≤ b) ≤ δ, where a ∈ Rnx , b ∈ R are constants,
and δ is the confidence level.

Lemma 1: Under the assumption that x is a multivariate
Gaussian random variable with mean µ and covariance
matrix Σ, the mentioned probability can be computed as

Prob(a⊤x ≤ b) =
1

2
+

1

2
erf(

b− a⊤µ√
2a⊤Σa

), (8)

where erf(·) is the standard error function.
Lemma 2: Given x ∼ N (µ,Σ) and δ ∈ (0, 0.5), the prob-

ablistic constraint can be transformed into a deterministic
constraint:

Prob(a⊤x ≤ b) ≤ δ

⇐⇒ a⊤µ− b ≥ erf−1(1− 2δ)
√
2a⊤Σa.

(9)

With Lemma 1 and Lemma 2, the chance constraints in Eq. 2
and Eq. 5 can be transformed into deterministic ones that are
easier to compute.

In the sensing or communication danger zone, the chance
constraint computes multivariate integration across a disk.
We linearly approximate the integration area to compute
a conservative upper-bound of the probability. Such an
approximation is illustrated in Fig. 1. As in Fig. 1(b), the
boundary is approximated using a half-space formed by a
line a⊤w = b that is tangent to the circle.

For a sensing danger zone with its hostile sensor centered
at xSl

∼ N (µSl
,ΣSl

), we can linearize it as

Prob(xi ∈ Sl) ≤ Prob(a⊤i,Sl
wi,Sl

≤ rl) ≤ ϵ1. (10)

In other words, we require the approximated probability to be
bounded by ϵ1, ensuring a safety distance between robots and
sensing danger zones. Here, ai,Sl

= (µSl
−xi)/∥µSl

−xi∥ is
a unit vector. The chance constraint in Eq. 10 has the same

(a) Exact integration region (b) Linear approximation of the integra-
tion region

Fig. 1: Illustration of linearizing the integration region, to compute
an upper-bound of the multivariate integral in Eq. 2 and Eq. 5.
Fig. 1(a) shows the original circular integration region, while the
half space in Fig. 1(b) is the approximation. The line a⊤w = b is
tangent to the circle.

form as the one in lemma 1 and lemma 2, thus is equivalent
to the following deterministic constraint

a⊤i,Sl
(µSl

−xi)−rl ≥ erf−1(1−2ϵ1)
√

2a⊤i,Sl
ΣSl

ai,Sl
. (11)

For simplicity of notation, we denote this as gSl
(xi) ≥ 0.

We apply the same linearization to the chance constraints of
communication danger zones. Consider the jamming station
at xCk

that follows the Gaussian distribution N (µCk
,ΣCk

).
The probability in Eq. 6 is approximated as

Prob(a < δ2c
∗) ≤ Prob(a⊤i,Ck

vi,Ck
≤ δ2c

∗) ≤ 1− ϵ2, (12)

where ai,Ck
= (µCk

− xi)/∥µCk
− xi∥. By lemma 1 and

lemma 2, it can be further transformed into a deterministic
constraint

a⊤i,Ck
(µCk

− xi)− δ2c
∗ ≥ erf−1(2ϵ2 − 1)

√
2a⊤i,Ck

ΣCk
ai,Ck

.

(13)
We write this equation as hCk

(xi) ≥ 0 for simplicity.
With the approximation technique, our optimization program
becomes:

min
ui,t,xi,t+1,∀i

w1 · Tr(Pt+1) + w2 ·
m∑
i=1

∥ui,t∥ (14a)

s.t. xi,t+1 = fi(xi,t,ui,t),∀i ∈ [m], (14b)
gSl

(xi) ≥ 0,∀i ∈ [m],∀l ∈ [p], (14c)
hCk

(xi) ≥ 0,∀i ∈ [m],∀k ∈ [q]. (14d)

We use a solver named Forces Pro [7, 8] to solve program 14
and obtain control inputs for all the robots.

IV. RESULTS

We evaluate the performance of our proposed method
under the setting where (i) there exist sensing danger zones;
and (ii) there exist communication danger zones.

A. Sensing danger zones

We consider the scenario where two robots are tasked to
track two targets in an environment with a sensing danger
zone, with different covariance matrices Σ and confidence
levels ϵ1 of the dangerous zones. The qualitative results of
three sets of parameter combinations are evaluated, and the
trajectories of both robots and targets are shown in Fig. 2. We



(a) Σ = 0.01, ϵ1 =
0.2, step 1200

(b) Σ = 0.01, ϵ1 =
0.2, step 2800

(c) Σ = 0.01, ϵ1 =
0.2, step 4200

(d) Σ = 0.2, ϵ1 =
0.2, step 1500

(e) Σ = 0.2, ϵ1 =
0.2, step 2800

(f) Σ = 0.2, ϵ1 =
0.2, step 4000

(g) Σ = 0.01, ϵ1 =
0.02, step 1500

(h) Σ = 0.01, ϵ1 =
0.02, step 2800

(i) Σ = 0.01, ϵ1 =
0.02, step 4000

Fig. 2: The snapshots of trajectories when there is a sensing danger
zone (pink) with three different parameter combinations. Each row
corresponds to one pair of Σ and ϵ1, with three subfigures taken
at different time steps. we use light and dark green to represent the
trajectory of the two robots. The targets (black) are moving straight
into the danger zone. The radius of circle qualitatively reflects the
uncertainty of its central hostile sensor, e.g., Σ = 0.2 in the second
row is higher, so we use larger disk to reflect it.

observed that the variation in parameters distinctly influences
robots’ trajectories when they are in proximity to sensing
danger zones. The subfigures in row 1 and row 2 illustrate
that increasing the uncertainty of danger zone forces the
robots to be more conservative and to keep a larger distance
from the sensing danger zone. This is consistent with our
intuition that if the robots are more uncertain about where
the hostile sensor is, they will be more discreet in their action
and make a larger detour to avoid being detected. Moreover,
from row 1 and row 3, decreasing the value of ϵ1 imposes
stricter requirements on robots, which prohibits them from
entering the sensing danger zone. In this case, the robots also
keep a larger distance away from the zone.

B. Communication danger zones

We show comparative results with a communication dan-
ger zone to illustrate how the communication danger zone
influences robots’ behavior. We run three sets of experiments
with different values for the uncertainty of the jammer Σ and
confidence level ϵ2, and compare the trajectories of robots.
We let four robots track two targets. We show the trajectories
of robots and targets together in Fig. 3, where each row
corresponds to one experiment and three subfigures in the
same row show the tracking process under that setting.

Under all three parameter settings, the robots can success-
fully track and follow the targets. They divide themselves
into 2-vs-2 sub-teams and each sub-team follows one target
for better team-level tracking performance. This coincides
with the characteristics of the Signal-to-Jamming ratio that
the robots prefer to stay together and away from the jammer
to prevent jamming. From row 1 and row 2, it is observed
that increasing the uncertainty of the position of the jammer
induces the robots to stay further away from the jammer.

(a) Σ = 0.1, ϵ2 =
0.8, step = 20

(b) Σ = 0.1, ϵ2 =
0.8, step = 60

(c) Σ = 0.1, ϵ2 =
0.8, step = 160

(d) Σ = 0.3, ϵ2 =
0.8, step = 20

(e) Σ = 0.3, ϵ2 =
0.8, step = 65

(f) Σ = 0.3, ϵ2 =
0.8, step = 150

(g) Σ = 0.1, ϵ2 =
0.9, step = 20

(h) Σ = 0.1, ϵ2 =
0.9, step = 60

(i) Σ = 0.1, ϵ2 =
0.9, step = 160

Fig. 3: The snapshots of trajectories when there exists a commu-
nication danger zone (blue) with three different parameter combi-
nations. Each row corresponds to one parameter setup, and three
sub-figures in the same row show the tracking process under that
setting. The robots’ trajectories are plotted in different shades of
green to distinguish these four robots. The trajectories of two targets
(black) are in circles with a counter-clockwise direction.

This aligns with our intuition that since the jammer position
is more uncertain, it is a safer strategy for robots to keep
a larger distance from the jammer to protect the inter-robot
communication from being interrupted. The comparison of
row 3 and row 1 shows that increasing the confidence level
ϵ2 leads to a stricter risk requirement. The robots need to
track targets from a larger safe gap. In other words, they
need to be more confident that their communication channel
will not be jammed.
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