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Abstract— Accurate deformable object manipulation (DOM)
is an essential component for achieving autonomy in robotic
surgery, which involves operations on soft tissue. Many DOM
algorithms can be powered by simulation, which ensures
realistic deformation by adhering to the governing physical
constraints. However, real soft objects in robotic surgery have
complex, anisotropic physical parameters and topology that a
simulation with simple initialization cannot capture. To use
the simulation technique in real surgical tasks, the “real-to-
sim” gap needs to be properly compensated. In this work, we
propose to use an optimization-based residual mapping module
to close the positional gap between a physics simulation and
perceptual observation. We further use this module to guide an
adaptive online estimation of the initialized physics parameters
of soft bodies using a position-based dynamics (PBD) simulator.
The proposed method is able to produce more realistic soft
body deformation. The performance of the proposed mechanism
is evaluated in the manipulation of a real thin-shell tissue
manipulated by the Da Vinci Surgical System.

I. INTRODUCTION

The physics-based simulation has been proven to be a

promising technique for deformable object manipulation

(DOM) in robotics [1], [2], [3], in particular for surgical

applications [4], [5]. It has been extensively researched from

the modeling, motion planning, and data representations

from perception perspectives. The development of physical

simulation environments can support a variety of deformable

objects, including thin-shell fabric, linear elastic ropes [6],

and volumetric tissue [7].

Considering many existed deformable simulators, the high

computational cost and “reality gap” are two factors that

limits the conventional simulation approaches, such as FEM,

mass-spring system [8], [1]. Uncertainties, inaccurately cali-

brated parameters, and unmodeled physical effects can all

lead to the gap. As a result, many simulators need their

parameters fine-tuned before being depolyed into actual

robotic systems. With the intention of bridging the gap

between reality and simulation, the phrase “real-to-sim” is

used to describe approaches that compensate the simulated

errors from real observations.

Therefore, our goal is to investigate the “real-to-sim” gaps

by taking into account both physical constraints and observ-

able high-dimensional data, i.e., point cloud. For real-time

applications such as surgical tissue grasping, it would also

be necessary to identify the proper simulation parameters and
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Fig. 1. The real-to-sim experiment setup in this work. (a): a piece of
chicken muscle manipulated by a dVRK manipulator. (b): A perception
pipeline estimates depth and a semantic mask of the tissue. (c): surface
point cloud is generated by a camera inverse projection. (d): A simulation
mesh is created with the initial observation.

the morphology of soft bodies with a fast online simulation

approach.

A. Related Works

The “real-to-sim” problem have gained attention recently

in literature. Most of the existed works have been focus-

ing on closing the gap through effective policy transfer in

a reinforcement learning setup, as reviewed in [9], [10].

Most of these works only rely on simulating rigid objects

in the scene and robots with kinematics [11]. Recently,

several papers use similar deep reinforcement learning for

deformable objects, such as cloth [12], tissue [13], ropes [14].

However, these works don’t create explicit physical models

and instead learning the system parameters or controls in an

end-to-end manner. It leads to several typical problems with

learning strategies, including generalizability, accuracy and

effectiveness.

Other methods rely on physics-based simulation to mini-

mize the “real-to-sim” gap. In our previous paper [7], we

directly update the simulated positions of the volumetric

particles using the spatial gradient of the signed distance

field of point cloud observation. However, the simulation

parameters are not updated, necessitating frame-by-frame

registration. Similarly, [15] optimizes for a simulation pa-

rameter, such as mass or stiffness, to minimize the differ-

ence between a simulation and the point cloud observation.

Furthermore, the authors enhanced their approach in [16]

as probabilistic inference over simulation parameters of the

deformable object. However, their method is limited to

thin-shell or linear objects (cloth, rope) with surface point

clouds. Projective dynamics [?] were used to create a real-



Fig. 2. A flow chart of the proposed residual mapping module in the simulation loop. At each time step, a control ut is applied to both the real tissue
and the simulation. In response, the PBD simulation solves for xt. A perception pipeline processes imagery data to obtain a surface point cloud zt of the
tissue. The residual mapping module estimates the residual deformation ∆t via optimization, which is then used to update the simulation state.

time physics-based model for tissue deformation, enhanced

by a Kalman filter (KF) for refining the simulation with

surface marker data. For further improvements, [17] uti-

lized a variational autoencoder with graph-neural networks

to learn low-dimensional latent state variables’ probability

distributions. These variables were iteratively updated using

an ensemble smoother with data assimilation to align the

simulation with real data. However, their offline training for

specific FEM simulation datasets poses challenges in real-

world applications, especially in surgery, where lengthy data-

collection and pretraining phases are impractical.

B. Contributions

In this work, we propose a residual mapping module to

compensate for the real-to-sim gap between actual observa-

tion and a simulation. The proposed framework can reduce

the positional gap while maintaining plausible geometric and

physical behavior. To this end, we present the following

novel contributions:

• To compensate for the real-to-sim gap, we propose an

optimization-based residual mapping module to accurately

match simulation states to real observation while respect-

ing geometric constraints;

• We are the first online method to incorporate the residual

mapping module into the physical simulation loop. By

updating the simulation parameters online, our method

adaptively reduces the real-to-sim gap.

• We set up a perception pipeline and conducted a real

thin-shell tissue manipulation experiment to evaluate the

proposed method.

II. METHOD

A. Problem Formulation

Let the state of a soft body in a physics simulation at time

stamps t be xt ∈ R
n×3, where n is the number of particles

of a mesh representing the soft body. We use the surface

point cloud projected from the stereo-depth estimation as

the observation, denoted as zt ∈ R
m×3, where m number

of points in the point cloud observation. Let ut be a point-

based positional control that is applied to the real object and

simulation simultaneously. In this work, we use an extended

position-based dynamic (PBD) simulator, which formulates

constraints with positional and geometric data. A constraints-

based formulation of PBD is given as

xt = PBD(xt−1,ut,Γ,C,kc)

s.t.,C(xt) = 0, Γ(xt) = 0
(1)

where Γ are static (boundary) conditions that are enforced

at each simulation step. The set of geometric constraints

that define the deformation of across the simulation is

C(x) = [C1(x), C2(x), · · ·, CI(x)]
⊤. kc ∈ R

I is the set

of weighting parameters associated with any kind of non-

boundary constraint. One can interpret that {C,kc} jointly

defines the total energy potential (unitless) generated by

constraints in a simulation:

U(x) = 1/2 C(x)⊤diag(kc)C(x) (2)

This is used by PBD to iteratively update particle positions,

by minimizing this energy term:

∆x = M
−1∇C

⊤∆λ

∆λ = −
(

∇CM
−1∇⊤

C+ α̃
)−1(

C+ α̃λ
)

α̃ = diag(kc)
−1/∆t2)

(3)

in which M is a diagonal mass matrix and λ is a Lagrange

multiplier vector.

In this work, we aim at optimizing stiffness parameters

associated with each particle, k ∈ R
n. This converts to

elastic constraints’ weights in the simulation, denoted by

kd ⊂ kc, by averaging stiffnesses across all involved

particles. The value of kd,i ∈ kd, that is, the weights of

an elastic constraint Ci(x) ∈ C, is

kd,i = 1/card(Qi)
∑

q∈Qi

kq, kq ⊂ k

where particle indices Qi are considered by Ci(x). Here, Qi

contains card(Qi) number of particles that are connected

via mesh edges, triangles, and tetrahedrons. This achieves

non-homogeneous elastic stiffness across different regions

of a soft body. We apply the developed framework on thin-

shell deformable bodies that a simulated with a single layer

particles similar to cloth.

B. Real-To-Sim Residual Mapping

In our framework, an optimization approach is used to

quantify the gap between simulation and reality as shown

in Figure 2. Specifically, we develop a gradient-based non-

rigid point cloud registration method to estimate the residual

deformation ∆ from the simulation state to match the surface



point cloud observation. To make the predicted residual

mapping accurate and physically realistic at the same time,

we consider both point cloud similarity and physical realness

as cost functions to minimize.

Because the correspondence between the simulation state

and point cloud observation is unknown, we use Chamfer

Distance as a measurement of the similarity between two

point clouds, which is computed by summing the squared

distances between the nearest neighbor of two point clouds.

It is defined as

D(xt, zt) =
∑

x∈xt

min
z∈zt

∥x− z∥22 +
∑

z∈zt

min
x∈xt

∥z − x∥22 (4)

Although Chamfer Distance alone can already match two

point clouds, it potentially violates the original geometric

relationship between simulation states. Previously, many

techniques, such as an As-Rigid-As-Possible regularization

term [18], can be used to address this problem. Instead, we

can achieve the same goal by directly utilizing the geometric

constraints that the PBD simulation defines. We regularize

the elastic potential term:

E(xt) = 1/2 C(xt)
⊤diag(k′

c
)C(xt) (5)

where k′
c

is a uniform user-defined stiffness matrix. Finally,

we compute a residual mapping ∆t via minimizing

g(xt, zt) = min
∆t

D(xt +∆t, zt) + E(xt +∆t) (6)

The above minimization problem is solved by performing

gradient descent with a fixed step size.

C. Online Stiffness Optimization

The proposed online optimization method differs from

previous real-to-sim methods as it does not rely on training

on previously collected trajectories. In this way, we are

solving an online problem that is much more generalizable to

real-world, unstructured environments. The algorithm is also

embedded in the simulation loop as shown in Algorithm 1.

One term we want to minimize directly is the residual gap,

which characterizes how much the simulation deviates from

Algorithm 1: Residual Mapping and Online Stiffness

Optimization in a PBD simulation

Input : Predefined control sequence U, stiffness k, real tissue R,
observation model H(R), residual mapping module g.

1 z0 ← H(R)
// Initialize a mesh and constraints.

2 x0,C← initializeSimulation(z0)
3 Ht ← [ ]
4 for each ut ∈ U do
5 R← ApplyControl(R,ut)
6 xt ← PBD(xt−1,ut,C,kc)
7 zt ← H(R)
8 ∆t ← g(xt, zt)

// Compute Lgap,Lhist,Lsmooth

9 Ltotal ← computeLoss(∆t, Ht,k)
10 k← Optimize(k,∇kLtotal)
11 Ht ← [Ht,xt +∆t]
12 xt ← xt +∆t

Fig. 3. Comparison of the real-to-sim Chamfer distance (smoothed)
between PBD and PBD-RM. In all four trajectories, the residual mapping
module significantly reduces the Chamfer distance.

Fig. 4. Surface point cloud observations overlaid on simulation meshes.
With the residual mapping, the simulation mesh matches to textured point
cloud observation better than the original PBD.

the observation for the current time step.

Lgap = ∥g(xt, zt)∥ (7)

The residual gap alone doesn’t consider historical informa-

tion and, therefore, is sensitive to current observation noise.

To address that, we introduce a history term computed over

a set of previous time points Ht. It is defined as

Lhist =
∑

h∈Ht

∥xh +∆h − PBD(xh +∆h,0,C,kc)∥ (8)

where xh and ∆h are snapshots of simulation states and

residual mapping at time point h. Specifically, Ht is con-

structed by uniformly sampling four snapshots from a win-

dow of the closest 20 previous frames. This loss function

finds the stiffness parameters that keep each snapshot at rest

when no control is provided (i.e., balancing external forces

and internal elastic forces).

In addition, we encourage a smooth spatial stiffness dis-

tribution by penalizing k’s differences between neighboring

particles. Let F be a set of all faces or tetrahedrons that sorts

tuples of particle indices, the smoothness loss is written as

Lsmooth =
1

2F

∑

f∈F

∑

i∈f

∑

j∈f

ki − kj (9)

where ki ∈ k is the stiffness value of the i-th simulation par-

ticle. Lastly, all terms are summed up and back-propagated

to the stiffness parameters. They are updated by taking a

stochastic gradient descent step in every simulation step.

III. EXPERIMENTS & PRELIMINARY RESULTS

A. Real Setup & Perception Pipeline

The proposed real-to-sim framework is evaluated in two

real-world deformable object manipulation examples of thin-

shell. Our experimental procedures involve the utilization

of the da Vinci Research Kit (dVRK) [19], employing

its robotic gripper to precisely manipulate soft tissue by

executing predefined trajectories. Simultaneously, a stereo

reconstruction pipeline processes stereo images captured by



Fig. 5. Comparison of future gaps at selected time points. The gaps are visualized at t = a + (b) time steps, meaning using the stiffness parameters
at time a, forward the simulation for b steps and then compute a gap. Both proposed PBD-RM and PBD-RM-ON can better predict the tissue’s future
deformation behavior than the original PBD simulation.

Fig. 6. Average future gap of comparison methods over time (smoothed).
Oour proposed components show large error reduction over PBD.

the da Vinci endoscopic camera in 720p, producing detailed

tissue surface point clouds. Figure 1 shows our physical

experiment setup.

Our perception pipeline comprises stereo-depth estimation,

semantic segmentation, and inverse camera projection to

generate surface point cloud observations of the soft tissues.

We utilize the Raft-Stereo [20] for stereo disparity estima-

tion. Segment-Anything [21] aids in identifying image pixels

corresponding to the tissue, allowing us to extract the tissue’s

surface point cloud from depth images. Subsequently, we

employ inverse camera projection to convert the segmented

depth into 3D positions. We also employ ArUco markers

to determine the camera-to-world transformation. The point

cloud is down-sampled to a size of 9000 points. Meshes

are reconstructed from point clouds and then re-meshed to

have 600 particles. The simulation’s boundary conditions are

selected at the locations of pins. With the above setup, we

collect in total two trajectories. From now, we refer to them

as Thin-shell-1, Thin-shell-2. The robotic gripper trajectories

are manually labeled on the image. Later, we refer to a PBD

simulation with a residual mapping module in its loop as

PBD-RM and one that further performs online updates as

PBD-RM-ON.

B. Results

The effectiveness of applying the proposed residual map-

ping in the simulation loop is evaluated with Chamfer

Distance. Figure 3 shows that the errors are notably reduced

in both trajectories using the proposed residual mapping

module. It shrinks the average errors from 1.84 mm and

2.55 mm to 0.001 mm and 1.31 mm. Figure 4 visualizes

the reduced differences between point clouds and mesh with

our mapping module. Our module aligns the mesh’s particles

while respecting PBD’s geometric constraints.

We formulate an average future gap et as our metric

for evaluating the proposed online optimization strategy.

Knowing the current simulation state xt and a future control

sequence, we can roll out a simulation, without knowing fu-

ture observations, to get future state sequence [xt+1...xt+T].
The average future gap is computed as

et = 1/T
∑T

s=1
∥g(xt+s, zt+s)∥ (10)

For all experiments, we pick a future horizon T = 10.

We compare to DiffCloud [15], a baseline that optimizes

simulation parameters by minimizing point cloud differences

on a training trajectory. we it trained with the first 30 frames

of each trajectory for 25 epochs. Figure 6 visualizes the av-

erage future gaps over time. Compared to the original PBD,

PBD-RM shows reduced errors, indicating that correcting the

current simulation state with residual deformation leads to

better future prediction. PBD-RM-ON outperforms all other

method overall. The baseline produces unsatisfactory result

as time goes on because it overfits to the beginning of that

trajectory, whereas the PBD-RM-ON does not as it updates

parameters online. Figure 5 visualizes the spatial distribution

of future gaps. It indicates larger errors located where tissues

are experiencing bending. Both PBD-RM and PBD-RM-ON

are effective at reducing errors in those regions.

IV. CONCLUSION

In this work, we presented a framework that reduces the

reality to simulation gap online while performing a soft

tissue manipulation task. A residual mapping module is

seamlessly integrated into a simulation loop, achieving a

minimal Chamfer distance between simulated particles and

observation while preserving the geometric relationships in

the simulator. Our optimization approach updates constraints’

stiffness parameters online. In real tissue experiments, it is

proven to be effective at improving predictive performance.

For deploying this work into real applications, one limitation

is its computation speed. Currently, PBD-RM-ON takes 0.9s

to complete a step. Despite that, it can be accelerated by GPU

implementation or updating the parameters asynchronously.

A possible future avenue of this work would be learning

residual non-linear constraints to capture more intricate tissue

behaviors.
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