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Abstract—Advances in the fields of machine learning and
artificial intelligence have enabled mobile robots to become
increasingly intelligent, efficient, and autonomous. However, as
these agents become more capable, there is a danger of value
misalignment, i.e., that the agent’s internal objectives may re-
sult in behaviors that do not align with the intentions and
preferences of humans. Towards addressing this problem in
robot navigation, this dissertation introduces novel algorithms
and a large-scale dataset to align the internal objectives of
mobile robots with human intentions and preferences, through
the lens of imitation learning. The first contribution of this
thesis is an imitation learning algorithm capable of learning
navigation behaviors from physically different agents, such as
humans, while effectively addressing the challenge of egocen-
tric viewpoint mismatch, a prevalent issue in visual imitation
learning. Next, to enable socially compliant robot navigation in
human-occupied environments, a large-scale dataset of navigation
demonstrations is introduced, which we show enables learning
socially compliant navigation policies using imitation learning.
Finally, in the context of off-road navigation, the dissertation
introduces a self-supervised multi-modal representation learning
algorithm, which, by utilizing easy-to-collect unconstrained robot
experiences, learns relevant terrain representations that enable
operator-preference-aligned off-road visual navigation, such as
an exciting real-world deployment of the Spot robot semi-
autonomously traversing a 3-mile trail successfully. In summary,
the contributions of this dissertation take a step toward enabling
mobile robots to navigate in alignment with human intentions
and preferences.

Index Terms—Imitation Learning, Reinforcement Learning,
Self-Supervised Learning, Robot Navigation

I. INTRODUCTION

Advancements in the field of machine learning and artificial
intelligence have ushered in a new era where mobile robots are
increasingly intelligent, efficient, and autonomous [1]–[5]. The
significant growth in compute capabilities such as hardware
accelerators, allows deep learning-based methods to learn from
vast amounts of data, enabling real-time perception [6]–[8],
planning [9], [10], and control [4], [11]–[15] in mobile robots.
However, as these agents become more advanced, there’s
increasing concern over value misalignment—where their in-
ternal objectives may not align with human intentions and pref-
erences. For instance, a vacuuming robot solely incentivized to
gather more dust may potentially begin spewing dust to collect
more rewards [16], an unintended behavior commonly known
as reward hacking [16], [17] in the reinforcement learning
community. Such discrepancies have been previously noted

in robotics [17]–[21], emphasizing the pressing need to align
the behavior of autonomous agents with human intentions and
preferences.

This dissertation focuses on the value misalignment problem
in the specific context of autonomous robot navigation in
unstructured indoor and outdoor environments. The aim is to
ensure that these robots not only navigate efficiently but also
in a manner that aligns with human intentions and preferences.
Classical heuristic-based methods [14], [22]–[24] excel in
structured environments but face challenges in dynamic, real-
world settings, such as navigating outdoor terrains and around
humans. In particular, these methods struggle in unfamiliar,
unmapped environments, unstructured off-road environments
with diverse terrains, and scenarios demanding safe navigation
around humans.

To address these limitations of classical navigation methods,
the research community is increasingly employing learning-
based techniques that can discern patterns from data [14], en-
abling adaptive robot behavior [4], [11], [25]–[29]. However,
the efficacy of these methods critically depends on articulating
a precise objective function that truly reflects human intentions
and preferences for particular tasks. Misalignment, due to
vague objectives, can produce unintended behaviors, like a
robot trampling flowers or cutting impolitely through crowds,
sometimes culminating in severe safety issues, especially
involving vulnerable populations. Such public safety incidents
have even resulted in bans on autonomous mobile robots in
public spaces [30], [31].

In light of the value misalignment problem with autonomous
robots, this dissertation adopts an imitation learning approach
for robot navigation and presents three key contributions.
First, we introduce VOILA [32], an Imitation from Observation
(IfO) algorithm that learns a navigation policy by imitating
video-only demonstrations from physically different experts,
such as humans, overcoming egocentric viewpoint mismatch,
a significant problem in visual imitation learning. Secondly, to
enable socially compliant robot navigation, this dissertation in-
troduces a large-scale dataset called SCAND [33] consisting of
25 miles of socially compliant teleoperated navigation demon-
strations, which enables learning socially compliant navigation
policies using imitation learning. Lastly, to enable off-road
terrain awareness and navigation over terrains in an operator-
aligned manner, this dissertation introduces STERLING, a self-



Fig. 1. Policy rollout trajectories of the VOILA agent (green) successfully imitating a demonstrated behavior (black) of patrolling a rectangular hallway
clockwise. The demonstration consists of a video gathered by a human walking while using a handheld camera that is considerably higher than the robot’s
camera (introducing significant viewpoint mismatch). We see that the VOILA agent is able to successfully imitate the expert demonstration even in the presence
of this egocentric viewpoint mismatch.

supervised terrain representation learning approach that learns
terrain representations through multi-modal self-supervision
from easy-to-collect unconstrained robot experience. In sum-
mary, this dissertation presents two novel algorithms and a
large-scale dataset that enable mobile robots to navigate in
unstructured indoor and outdoor environments in accordance
with human intentions and preferences.

II. CONTRIBUTIONS

In this section, we introduce the three contributions of
this dissertation. First, we present VOILA, an Imitation from
Observation (IfO) algorithm for autonomous navigation. We
then introduce SCAND, a large-scale dataset of demonstrations
for socially compliant robot navigation. Lastly, we present
STERLING, a self-supervised representation learning approach
to learn relevant terrain representations that enable operator-
aligned visual terrain-aware navigation in outdoor environ-
ments.

A. Visual Imitation Learning for Autonomous Navigation 1

The task of autonomous robot navigation is to enable a
robot to navigate autonomously, with minimal or no human
supervision during deployment from one location to another,
involving sequential decision-making along the path. Rein-
forcement Learning is a branch of machine learning that ad-
dresses sequential decision-making problems such as the task
of autonomous mobile robot navigation. Applying reinforce-
ment learning-based approaches to physical robots requires a
well-defined dense reward function that is informative of the
task, aligns with the objective of the human operator, provides
real-time feedback, and should not suffer from unintended

1A recorded presentation of this work is available at: VOILA ICRA’22

behaviors when optimized. While defining such as reward
function is hard, we seek to imitate navigation behaviors
from demonstrator agents, such as humans. However, doing
so introduces an egocentric viewpoint mismatch between the
observation spaces of the demonstrator and imitator agents, as
shown in Fig. 1, posing a major challenge for existing state-
of-the-art imitation learning algorithms [34]–[37].

Towards addressing the egocentric viewpoint mismatch
problem in visual imitation learning and to learn naviga-
tion policies by imitating physically different agents such
as humans, we introduce Visual Observation-only Imitation
Learning for Autonomous navigation (VOILA) [32]. VOILA
introduces a novel reward function for IfO, overcoming ego-
centric viewpoint mismatch using existing viewpoint-invariant
keypoint detectors such as SUPERPOINT [38]. We perform
experiments in the physical world with the Clearpath Jackal
mobile robot, and in a simulated photorealistic AirSim [39]
simulator, and find that compared to the existing state-of-the-
art adversarial IfO algorithm GAIfO [40], VOILA is sample-
efficient while being successful at imitating video-only demon-
strations even in the presence of significant egocentric view-
point mismatch, and also generalizes to unseen environments,
while solving the task, as intended by the human demonstrator.
Fig. 1 shows the performance of VOILA in the physical robot
experiments. The trajectories of different approaches are traced
and superimposed on a map of the environment, used only for
visualization purposes. We see that compared to a sub-optimal
policy and a random policy, VOILA is able to successfully
imitate the expert’s video-only demonstration and thereby
learn the task of clockwise hallway patrol.

https://www.youtube.com/watch?v=aFspSnjnw-k


Fig. 2. Five example scenarios from SCAND showing the RGB image and below it the accompanying pointcloud with the monocular image. From left to
right, the scenarios have the tags “Street Crossing”, “Narrow Doorway, “Navigating Large Crowds”, “Vehicle Interaction”, and “Crossing Stationary Queue.”

B. Socially Compliant Robot Navigation 2

Social navigation, or social compliance, is the capability
of an autonomous agent, such as a robot, to navigate in
a socially compliant manner in the presence of other au-
tonomous agents such as humans. With the emergence of
autonomously navigating mobile robots in human-populated
environments (e.g., domestic service robots in homes and
restaurants and food delivery robots on public sidewalks),
incorporating social compliance becomes essential to ensuring
safe and comfortable navigation in human presence.

The use of imitation learning algorithms, such as VOILA
[32] described in the previous subsection, for social navigation
is currently hindered by a lack of large-scale datasets that
capture socially compliant robot navigation demonstrations
in the wild. To fill this gap, we introduce Socially Compli-
Ant Navigation Dataset (SCAND) [33]—a large-scale, first-
person-view dataset of socially compliant robot navigation
demonstrations3. The SCAND dataset contains 8.7 hours, 138
trajectories, and 25 miles of socially compliant, human-
teleoperated driving demonstrations that comprise multi-modal
data streams including 3D lidar, joystick commands, odometry,
visual and inertial information, collected on two morpholog-
ically different mobile robots—a Boston Dynamics Spot and
a Clearpath Jackal—by four different human demonstrators in
both indoor and outdoor environments within the UT Austin
campus. In addition to the multi-modal sensor data, SCAND
also contains 12 coarse social interaction labels that occur
along every trajectory. Fig 2 shows five example scenarios
and their associated tags in SCAND.

We perform validation through physical robot experiments
on two indoor scenarios, as shown in Fig. 3 and find that
navigation policies learned by imitation learning on SCAND
generate socially compliant behaviors. Specifically, we ask
fourteen human participants to evaluate the behavior cloning
agent trained on SCAND, and the movebase [22] agent (a
classical, heuristic-based navigation stack available in ROS)
on two questions related to safety and social compliance. On
average, the participants felt the imitative policy trained using
SCAND was more socially compliant and safe in comparison
to the movebase agent in both scenarios shown in Fig. 3.

2A recorded presentation of this work is available at SCAND IROS’22
3SCAND is openly accessible via the Texas Robotics Dataverse

Fig. 3. Evaluating the local planner agent trained using Behavior Cloning on
SCAND. Scenario on the left shows a stationary human in the robot’s path
and the scenario on the right shows a human walking to the location of the
robot. The robot is evaluated on social compliance and safety as it navigates
to its goal position.

C. Operator Preference-Aligned Off-Road Navigation 4

Off-road navigation is emerging as a crucial capability for
autonomous mobile robots envisioned for use in a growing
number of outdoor applications such as agricultural operations
[41], package delivery [42], and search and rescue [43]. A
major challenge for existing mobile robots that are deployed
in outdoor real-world environments is the capability to be
terrain-aware, i.e., visually identify and distinguish different
terrains. However, instilling robots with visual terrain aware-
ness has been challenging, as prior works require large-labeled
datasets [44]–[46], structured demonstrations [47], or learn
task-specific behaviors [48]–[50] that may not generalize, or
learn behaviors that may not align with operator’s preferences.

In this work, we focus on self-supervised learning of terrain
representations using multi-modal unconstrained robot experi-
ences, eliminating the requirement of manually labeled large-
scale datasets. We present a novel algorithm, Self-supervised
TErrain Representation LearnING from unconstrained robot
experience (STERLING) [51], [52], which harnesses onboard
multi-modal data for effective terrain representation learning.
Through STERLING, we can proactively query a human op-
erator’s terrain preferences, enabling operator-aligned visual
navigation on autonomous mobile robots.

4This work is recently accepted for publication at CoRL’23 and an initial
version was presented at the PT4R workshop at ICRA’23

https://youtu.be/QgBfMjWpQIw
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/0PRYRH


Fig. 4. Trajectories traced by different approaches in 5 environments containing 8 different terrains. The operator preferences are shown above. We see that
STERLING navigates in an operator-preference aligned manner, by preferring cement sidewalk, red bricks, pebble sidewalk, and yellow
bricks over mulch, grass, marble rocks, and bush, outperforming other baselines and performing on-par with the Fully-Supervised approach.

We evaluate STERLING against state-of-the-art visual off-
road navigation algorithms such as GANav [46], RCA [48], SE-
R [49], geometric-only planner [53] and a fully-supervised ap-
proach. We perform quantitative trials 5, comparing STERLING
with the baseline approaches, within the UT Austin university
campus. The trajectories traced by all algorithms, in five
environments, along with the operator’s preferences are shown
in Fig. 4. We additionally perform a large-scale qualitative
evaluation of STERLING by deploying it in a 3-mile trail 6 on
a Spot robot 7. The robot is tasked with semi-autonomously
traversing the trail while adhering to operator-defined terrain
preferences for the trail. Fig. 5 shows the 3-mile trajectory
traced by the robot and the two failure cases that required
manual intervention. This large-scale qualitative experiment
demonstrates both the reliability of STERLING in diverse real-
world conditions and its efficacy in operator-aligned off-road
navigation.

III. CONCLUSION

In this dissertation, we address the crucial challenge of
aligning robot navigation objectives with human intentions
and preferences in unstructured environments, by presenting
three novel contributions. First, we introduced VOILA, a visual
imitation learning algorithm that adeptly overcomes the com-
mon egocentric viewpoint mismatch problem. By leveraging a
unique reward function, it successfully imitates, on a mobile
robot, navigation demonstrations from physically different

5A video summary of quantitative experiments is available at:
https://youtu.be/7WI41DfJQ2k

6Ann and Roy Butler Trail, Austin, TX, USA
7A video of the robot traversing the 3-mile trail is available at:

https://youtu.be/dQb1XzocdtE

Fig. 5. A large-scale qualitative evaluation of STERLING on a 3-mile outdoor
trail. STERLING features successfully complete the trail with only two manual
interventions (shown in red).

agents, such as humans. Secondly, we introduced SCAND, a
large-scale dataset of teleoperated navigation demonstrations,
which facilitates the learning of socially compliant navigation
policies through imitation learning. Finally, we introduced
STERLING, a self-supervised multi-modal representation learn-
ing algorithm. STERLING learns relevant terrain representa-
tions from easy-to-collect unconstrained robot experiences,
making it feasible to discern operator terrain preferences and
traverse in an operator-aligned manner. We demonstrated this
on a 3-mile hike performed by the Spot robot, using STERLING
features, which it completes successfully, demonstrating its ro-
bustness and efficacy in real-world conditions. Collectively, the
contributions in this dissertation take a step towards addressing
the value misalignment problem in robot navigation, enabling
harmonious coexistence between robots and humans in diverse
real-world environments.

https://youtu.be/7WI41DfJQ2k
https://youtu.be/dQb1XzocdtE
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