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Abstract—
Motion planning is integral to robotics applications such as

autonomous driving, surgical robots, and industrial manipu-
lators. Existing planning methods lack scalability to higher-
dimensional spaces, while recent learning-based planners have
shown promise in accelerating sampling-based motion planners
(SMP) but lack generalizability to out-of-distribution envi-
ronments. To address this, my research explored the use of
Transformers for motion planning. We proposed two planning
techniques - Motion Planning Transformers (MPT) and Vec-
tor Quantized-Motion Planning Transformers (VQ-MPT)- that
overcome previous learning-based methods’ generalization and
scaling drawbacks. Both methods split large planning spaces
into discrete sets and selectively choose the sampling regions.
This enables the planners to accelerate and integrate with out-
of-the-box SMPs while generating near-optimal paths. Trained
models of MPT and VQ-MPT generalize to environments
unseen during training and achieve higher success rates than
previous methods. MPT can generalize to costmaps of varying
sizes while VQ-MPT is generalizable in that it can be applied
to systems of varying complexities, from 2D mobile to 14D
bi-manual robots with diverse environment representations,
including costmaps and point clouds.

I. INTRODUCTION

Sampling-based motion planning uses randomly sampled
points to generate a tree-based collision-free path between a
start and goal location [1], [2]. However, random sampling
is inefficient [3] for goal-directed tasks, particularly when
the search space spans a high number of dimensions. Since
sampling-based motion planners (SMPs) are a fundamental
component of numerous autonomous systems [4], [5], im-
proving the efficiency and generalizability of the underlying
planners enables these systems to handle more complex
tasks with intricate sequences of planning, improves task
execution, and reduces the need to re-parametrize planners
for different environments.

While SMPs effectively find a trajectory, they face sev-
eral challenges in improving sampling efficiency. As the
dimensionality of the planning space increases, the ”curse
of dimensionality” makes sampling more difficult and time-
consuming. Efficiently exploring planning spaces to find
feasible paths is also a significant challenge. The parameters
of these planners also need to be reconfigured to solve
for different environments reliably. Most of these planners
are probabilistically complete, i.e., the planner will find a
path if a trajectory exists, given enough time. But finding
an optimal trajectory, like the shortest path, is challenging,
especially for higher dimensional spaces. Numerous works
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Fig. 1. VQ-MPT can efficiently split high-dimensional planning spaces
into discrete sets of distributions. Each distribution is represented using a
latent variable called code or dictionary value. Given a planning problem,
the model selects a subset of codes and samples from the associated
distributions to construct the trajectory. By sampling efficiently, VQ-MPT
reduces planning times by 2-6× compared to previous planners.

have been proposed that address some combinations of these
challenges.

Recently, the integration of point cloud data has gained
traction in planning methodologies, enabling the capture of
diverse scenes with intricate environment representations [6],
[7]. Planning using sensory data such as costmaps and point
clouds can have several benefits. Point clouds allow for a
more accurate environment representation, enabling precise
motion planning as the robot can better understand the
surroundings, including complex shapes and uneven surfaces.
For robotic arms and manipulators, point clouds can aid in
a better understanding of object shapes and sizes, leading
to improved grasping and manipulation strategies. This is
especially useful in tasks like pick-and-place operations.
Models that rely on point clouds have also been shown to
be easier for real-to-sim transfer [8] because they rely on
the geometry of the points rather than the texture and pixels
from an image. Therefore, planning models that utilize point
cloud data are valuable to the robotics community.

Numerous learning-based methods have been proposed
before that address the challenges of SMP, utilizing envi-



Fig. 2. (From top left clockwise) Vertices used by RRT*, IRRT*, MPT-
IRRT*, and MPT-RRT* for the same start (green) and goal (red) positions.
MPT aided planners can significantly reduce the number of vertices (orange)
required to search for a path.

Fig. 3. Plots of MPT aided planning for out-of-distribution environments.
A, B, C: Plot of paths for Random Forest environments of different sizes.
The architecture of the MPT Model allows flexibility in planning for
environments of different sizes.

ronment representations such as point clouds and costmaps
[9], [10], [11], [12], [13], [14]. These methods learn from
previously planned paths and use this experience to effi-
ciently plan for new scenes and environments. Some of these
methods also scale well to high-dimensional planning spaces.
However, poor generalization makes these models intractable
for real robotics applications.

Recent advances in large language models, such as BERT
[15], and GPT [16], have inspired similar efforts in solving
planning tasks using transformer models [17], [18], [19].
Transformer models are an ideal candidate for solving plan-
ning tasks because of their ability to make long-horizon
connections [20]. These models make better control decisions
in robotic quadrupedal walking tasks by attending to proprio-
ceptive and visual sensor data [21]. [19] propose transformer
models for solving for planar manipulators and 2D mobile
robots. Although these works support the possibility of using
transformer models for motion planning, for models that
attend to sensory data, it is difficult to interpret the policy’s
future control actions and provide any form of guarantee for
the underlying planner.

Our initial work, Motion Planning Transformers [22],
demonstrated that transformer models could be applied to
the motion planning problem and significantly accelerate
sample-based planning; however, via direct application of
transformer models developed for 2D data such as images
and videos, the scope of planning was limited to 2D maps
that would be only conducive to solving planar robots and
vehicle planning problems. Our follow-up paper introduced
Vector Quantized-Motion Planning Transformer (VQ-MPT)
[23], a transformer-based model that uses vector quantization
to discretize the planning space into a set of distributions.

Through our experiments, we show, by improving sampling
efficiency, how transformer-based models reduce planning
time compared to previous heuristics-based methods such
as BIT∗[24] and improve generalization to unseen out-
of-distribution environments than learned planners such as
Motion Planning Networks (MPNet) [9].

II. METHODS & RESULTS

A. Motion Planning Transformers

Transformer models have been extensively used for image
reconstruction tasks [25], [26] due to their ability to make
long-horizon correlations. Our first work, Motion Planning
Transformer (MPT), utilized Vision Transformers [27] for
planning for 2D mobile systems where environments are
represented as costmaps [22]. Each costmap was discretized
into grids, and a region proposal network using a transformer
architecture attended to different patches to identify regions
of interest for the current planning problem. Once a particular
region has been identified, an off-the-shelf SMP was used to
identify regions of interest for the current planning problem.
We also proposed a novel positional encoding while training
that enables the trained model to generalize to maps of
different sizes (Fig. 3). We also expanded our framework
for planning for SE(2) robots, where the region proposal
network also predicts an orientation for each grid it selects,
and the SMP planner samples a random pose from a Gaus-
sian distribution centered at the predicted pose.

By reducing the search regions, we show that MPT-
aided planners reduce vertices on the planning tree by 2-
12 × and planning time by 7-25× compared to traditional
planners for 2D robots (See Fig. 2 while for SE(2) robots,
the planner can improve planning time by 2×. Due to
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Fig. 4. An outline of the model architecture of VQ-MPT. Stage 1 (Left) is a Vector Quantizer that learns a set of latent dictionary values that can be mapped
to a distribution in the planning space. By encoding the planning space to discrete distributions, we can plan for high-dimensional robot systems. Stage 2
(Right) is the Auto-Regressive (AR) model that sequentially predicts the sampling regions for a given environment and a start and goal configuration. The
cross-attention model transduces the start and goal embeddings given the environment embedding generated using a feature extractor. The output from the
AR Transformer is mapped to a distribution in the planning space using the decoder model from Stage 1.

their ability to make long-horizon correlations, MPT-assisted
planners achieve a 7-28% improvement in accuracy over
recent learning-based planners. Our novel position encoding
improves the planner’s accuracy by 60% for larger maps. We
also provide a ROS2 plugin for the Nav2 navigation stack
[28] for our method. This will benefit the robotics community
to work with and extend our models for planning.

Although MPT improved planning for mobile robots, two
challenges prevented it from extending to higher-dimension
planning spaces. First, MPT required splitting the entire
planning space into discrete grids. Hence, for the 7D robot,
if each dimension is split into 10 segments, that’s a million
grids for the region proposal network to attend. Hence,
applying transformers to this type of discretization would
be computationally intractable. Secondly, MPT requires the
planning and task space to overlap, but this is true for
manipulation systems where the task space is SE(3) while
the planning space is Rn. Our follow-up work on Vector
Quantized-Motion Planning Transformers (VQ-MPT) tackles
these challenges.

B. Vector Quantized-Motion Planning Transformer

An outline of VQ-MPT is given in Fig. 4. The model
consists of two stages - a quantization stage and a prediction
stage. The quantization stage segments the planning space as
a collection of distributions rather than discretized grids. VQ-
MPT uses a Vector Quantized (VQ) model to generate the
collection of distributions of the planning space. VQ models
are generative models with an encoder-decoder architecture
similar to Variational AutoEncoder (VAE) models but with

the latent dimension represented as a collection of learnable
vectors referred to as dictionaries. Each dictionary value
represents a distribution in the planning space.

The prediction stage generates sampling regions by pre-
dicting indexes from the dictionary set for a given planning
problem and sensor data. It comprises two models - a
cross-attention model to embed start and goal pairs and
the environment embedding into latent vectors (M ) and
a transformer-based Auto-Regressive (AR) model to pre-
dict the dictionary indexes. The environment representation
(i.e., costmap or point cloud data) is passed through a
feature extractor to construct the environment encodings
E = {e1, e2, . . . , ene

} where ei ∈ Rd. The feature extractor
reduces the dimensionality of the environment representation
and captures local environment structures as latent variables
using convolutional layers for costmaps and set-abstraction
proposed in PointNet++ [29] for point clouds. We chose
these architectures because they are agnostic to the environ-
ment size and can generate latent embeddings for larger-sized
costmaps or point clouds. The start and goal states (qs and
qg) are projected to the start and goal embedding (Es ∈ Rd

and Eg ∈ Rd) using a MLP network. The cross-attention
model uses the environment embedding, E , and the start
and goal embedding, {Es, Eg} to generate latent vectors M .
The cross-attention model learns a feature embedding that
fuses the given start and goal pair with the given planning
environment. It uses the vector in E as key-value pairs, and
Es and Eg as query vectors to generate M . Thus, learning
a latent representation that combines the task and planning
space.



TABLE I
PLANNING STATISTICS FOR OUT-OF-DISTRIBUTION ENVIRONMENTS

Robot IRRT∗ BIT* RRT MPNet VQ-MPT

7D
Accuracy 44.60% 37.80% 84.20% 53.20% 92.20%

Time (sec) 55.12 75.32 8.88 10.14 3.24
Vertices 215 5147 477 310 306

14D
Accuracy 10.60% 12.20% 75.00% 80.40% 98.60%

Time (sec) 20.72 30.07 19.75 23.91 6.21
Vertices 20 1673 179 104 70

7D (Real)
Accuracy 10/10 10/10 10/10 3/10 10/10

Time (sec) 30.68 26.42 1.69 2.23 1.17
Vertices 607 2852 21 7 34

Fig. 5. Sample paths planned by the VQ-MPT
planner for 14D robot on an in-distribution en-
vironment. The red and green color represents
the start and goal states of the robot, respec-
tively. Given an environment with crowded ob-
stacles, VQ-MPT can sample efficiently from
learned distributions to find a trajectory.

Fig. 6. Snapshots of a trajectory planned using VQ-MPT on a physical Panda robot. VQ-MPT generalizes to real-world sensor data without any additional
data collection or fine-tuning and reduces planning time for finding near-optimal paths.

We evaluated our framework on a simulated 7D Franka
Panda Arm and a 14D Bimanual robot setup (See Fig.
5). VQ-MPT models for both these robots were trained
using RRT* trajectories and point cloud data generated in
simulation. Our experiments compared the use of VQ-MPT
coupled with RRT planner with traditional and learning-
based planners on a diverse set of planning problems. All
planners were implemented using the Open Motion Planning
Library (OMPL) [30].

The environments the models were trained on are similar
to those seen in Fig. 5, where obstacles are placed randomly.
The environments used for testing consisted of real-world
obstacles such as shelves and cupboards as in Fig. 1. Our
results show that VQ-MPT can efficiently discretize the
planning space and select sampling regions to construct
optimal trajectories. By leveraging sensor data such as point
clouds, VQ-MPT can narrow down the search region in the
planning space, enabling it to achieve 8-24% more accuracy
than non-optimal planners such as RRT.

To evaluate the performance of VQ-MPT on physical
sensor data, we tested a trained model in a real-world
environment (Fig. 6). The environment was represented using
point cloud data from Azure Kinect sensors, and collision
checking was done using the octomap collision checker from
Moveit 1. Camera to robot base transform was estimated
using markerless pose estimation technique [31]. Our results
in Table I show that the model can plan trajectories faster
than RRT with the same accuracy. This experiment shows
that VQ-MPT models can also generalize well to physical
sensor data without further training or fine-tuning. Such gen-

1https://moveit.ros.org/

eralization will benefit the larger robotics community since
other researchers can use trained models in diverse settings
without collecting new data or fine-tuning the model.

III. FUTURE WORK & CONCLUSION

Our work has explored the benefits of using transformers
for reducing the search spaces for SMP’s. Both MPT and
VQ-MPT generalize to a wide array of environments outside
their training set, making it easier to disseminate trained
models to the wider robotics community. VQ-MPT, in the-
ory, could scale to larger dimensions, making the approach
applicable to a wide range of robot systems. Using feature
extractors such as PointNet++, our model better understands
geometric objects, enabling robust transfer of these models
to real-world systems.

Our work has laid the groundwork for using transformers
for planning. The dictionary encodings in VQ-MPT could be
considered the fundamental building blocks for setting up a
robot language. In our work, we solved the motion planning
problem by selecting a set of these words to construct
the robot trajectory. More complex problems, such as task
and motion planning (TAMP), require stitching together
several trajectories, which could be thought of as composing
a paragraph. Given the recent ability of large language
models such as GPT [16] to generate complex phrases, a
promising research direction would be to explore the use of
VQ-MPT for solving TAMP problems. Other works could
explore extending VQ-MPT for constraint and kinodynamic
planning.
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