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Abstract— The shape information is essential for soft robots
because it shows how the robot deforms during manipulation
or navigation. Many previous works rely on embedded sensors,
such as optical or electromagnetic, to capture the motion and
localize in the 3D world. Alternatively, camera sensors are
favorable because they are information-rich, easy to set up,
and cost-effective. However, many existed vision-based works
requires stereo images and depth data for reconstruction.
In this work, we achieve image-based shape reconstruction
of soft, continuum robot. Our method requires no precise
robot meshes, but rather utilizes a differentiable renderer and
a geometrical primitive, i.e., Bézier curve. It hence can be
applied to soft robots even during deforming. Our parameter
estimation pipeline is fully differentiable. The robot shape are
estimated iteratively by back-propagating the image loss to
update the parameters. We demonstrate that our method of
using geometrical shape primitive can achieve high accuracy in
shape reconstruction for a soft continuum robot.

I. INTRODUCTION

Accurate sensory feedback of shape parameters is a cor-

nerstone requirement for effectively operating autonomous

systems in unfamiliar, real-world spaces. The drawback is

that they all display cumulative errors as a result of de-

formable body configurations, in particular for soft, contin-

uum robots.

The shape of the soft, continuum robot must be estimated

when navigating in dynamic environments in order to in-

crease the stability of the control system [1]. For soft robots,

electromagnetic (EM) and Fiber Bragg Grating (FBG) sen-

sors are integrated into the robot for measuring the state

parameters directly [2]. A neural network may have been

trained directly to map sensor readings to 3D shape such as

in [3], [4]. However, the procedure of mounting the internal

sensor can be cumbersome and extra efforts are required

for designing the robot. Meanwhile, it requires significant

amounts of labeled datasets which is usually infeasible for

soft robots.

Alternatively, tracking and reconstruction the robot’s shape

configurations directly from a camera offers the greatest

flexibility. They are easy to set up or are already recording,

do not require access to internal robot sensors, are affordable

and widely ubiquitous. Traditionally, fiducial markers, like

ArUco marker [5] and AprilTag [6], are widely used for

classical rigid robot pose estimation. These markers are

attached to the specific locations of the robot and the robot

state parameters can be estimated by knowing the kinematics

model. However in most unstructured environments, it is
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Fig. 1. Soft continuum robot shape reconstruction (right) with a BÂezier
geometrical primitive via differentiable rendering from real images (left).

unrealistic to have these markers attached. For soft robot

applications, their body deformations and their tendency

for full-body contact with environments and objects make

it frequently impractical for securing fiducials or template

markers.

In the literature, other imaged-based reconstruction works

are very task- and environment-specific. Techniques include

using fluoroscopy [7], [8] and ultrasound [9], [10]. These

image-based techniques require specific imaging sources

which might not always be available. [11], [12], [13] consider

using endoscopic images for shape reconstruction while the

markers are still required for identifying predefined feature

points. Moreover, [14], [15] also introduce the shape recon-

struction methods of using stereo images and depth data.

In contrast, we will be focusing on markerless shape

reconstruction from a single RGB camera. Recently, in

computer graphics, differentiable rendering has proved to

be effective in image-based reconstruction by computing the

derivative of images with respect to scene parameters such

as object geometrical shape [16], [17], [18]. This could be

translated to our task for the shape reconstruction.

In this paper, we demonstrate the capability of estimating

3D robot shape directly from a single image, as shown in

Fig. 1. The method works via the technique of differentiable

rendering, and can be effective for soft continuum robots.

This is uniquely challenging, as soft continuum robots have

an infinite number of configurations due to deformation.

Under these constraints, we are still able to reconstruct

the robot’s shape through a predefined geometrical shape

primitive, i.e., BÂezier curve.

Our contributions are:

1) We propose a general framework for shape reconstruc-

tion by utilizing differentiable rendering with a single

image.

2) The framework can be applied to any geometrical

shape primitive; in this instance, we use a BÂezier curve

to estimate the parameters.



Fig. 2. The shape reconstruction framework of the soft continuum robot using differentiable rendering. The blue arrows are the forward pass, while the
green arrows are the backward calculations.

3) We investigate the novel loss functions to overcome the

local minima when applying differentiable rendering to

the objective of robot pose estimation.

For a designed soft continuum robot, we collect real image

datasets by deforming into different shape. We reconstruct

the robot’s shape by estimating the curve parameters to assess

the effectiveness of our framework.

II. METHODOLOGY

We consider the problem of reconstruction the soft con-

tinuum robot shape parameters Θ from a single RGB image.

Specifically, we estimate the robot shape by minimizing

differences between the observed RGB image and a rendered

reconstruction image. This is formulated as follows:

Θ∗ = argmin
Θ

L(fmask(I), frender(Θ)) (1)

where fmask processed the given RGB image I into a

binarized mask image for the robot. The function frender
takes in the estimated parameters, reconstructs the robot 3D

shape, and renders the reconstruction. We aim to estimate the

state parameters by minimizing the objective loss function L.

The process to get to this stage is described below.

A. The Shape Reconstruction Framework

The overall framework for state parameter estimation is

illustrated in the Fig. 2. We first process the observed RGB

image I into a binary mask M
ref , which segments the robot

pixel from the background. The binary mask contains value

1 for the pixels that belong to the robot and 0 otherwise. In

our implementation, the segmentation is achieved by color

segmentation for the soft continuum robot. We also initialize

a robot mesh in a renderer as a set of geometrical primitive

shapes with predefined vertices, edges, and faces.

During the iterative optimization process, we estimate the

deformation of mesh vertices parameterized by Θverts and

reconstruct the robot mesh with state parameters Θstate

(Section II-B). We render a silhouette image S from the

Algorithm 1: Robot Shape Reconstruction via Dif-

ferentiable Rendering

Input : Image frame I, initialization Θ
(0)
state,Θ

(0)
verts

Output: Reconstructed robot shape Θ∗
state,Θ

∗
verts

// Generate robot masks

1 M
ref ← fmask(I)

// Optimization loop

2 Lmin =∞
3 for i = 0 to No do

// Section III-B

4 M(i) ← reconstructMesh(Θ
(i)
state,Θ

(i)
verts)

// Section III-C

5 S
(i) ← silhouetteRendering(M(i))

6 L(i) ← computeLoss(S(i),Mref )
7 if L(i) < Lmin then

8 Lmin = L(i)

9 Θ∗
state = Θ

(i)
state

10 Θ
(i+1)
verts = Θ

(i)
verts − λverts

∂L(i)

∂Θ
(i+1)
verts

11 Θ
(i+1)
state = Θ

(i)
state − λstate

∂L(i)

∂Θ
(i+1)
state

12 return Θ∗
state,Θ

∗
verts

reconstruction and compare it with the reference masked

image M
ref . A loss L is computed based on the curated

objective functions (Section II-C). Since the full recon-

struction and rendering pipeline is differentiable, we iterate

the optimization process for No times and output the state

parameters that minimize the objective loss with gradients-

based method. The pipeline is detailed in Algorithm 1.

B. Reconstruct Robot Mesh with Geometric Primitives

In this section, we describe the methods of reconstructing

the robot mesh using geometric primitives for the soft robot.

The shape of a soft continuum robot can be described in sev-



eral ways, most easily using a constant curvature model [19].

However, since this is a limiting approximation, instead a

better model chosen is a BÂezier curve model, which expresses

a smooth and continuous curve with arbitrary curvature in 3D

space. A Given a set of N control points {ci|ci ∈ R
3}Ni=0,

the shape of the curve is defined as:

p(s) =

N
∑

i=0

N !

i! (N − i)!
(1− s)N−isici , 0 ≤ s ≤ 1, (2)

For simplicity, we use a quadratic BÂezier curve (N = 2) and

estimate the state of the control points Θstate (see Fig. 2).

In general, the surface mesh for a continuum robot can

be approximated as the tubular structure [20]. A tubular

surface is defined as a union of cross sections, and each

cross-section is centered at the axis along the 3D curve.

To describe 3D coordinate frames along a quadratic BÂezier

curve, we compute the Frenet±Serret frame which is defined

by a unit vector T tangent to the curve, a unit vector N

normal to the curve, and a unit vector B perpendicular to the

tangent and normal vectors. The Frenet±Serret coordinates,

parameterized by s, are defined as:

T(s) =
p′(s)

∥p′(s)∥

N(s) =
T′(s)

∥T′(s)∥
=

p′(s)× (p′′(s)× p′(s))

∥p′(s)∥ ∥p′′(s)× p′(s)∥

B(s) = T(s)×N(s) =
p′(s)× p′′(s)

∥p′(s)× p′′(s)∥

(3)

where p′(s),p′′(s) are the first and second derivatives of the

quadratic BÂezier curve model:

p(s) = (1− s)2c0 + 2(1− s)sc1 + s2c2

p′(s) = 2(1− s)(c1 − c0) + 2s(c2 − c1)

p′′(s) = 2(c2 − 2c1 + c0).

(4)

Each cross-section is approximated as a circle with the radius

Θverts := r(s), and the corresponding tubular surface is

defined as:

S(s, φ) = p(s) + r(s) [−N(s) cosφ+B(s) sinφ] (5)

with φ ∈ [0, 2π]. Since a point on the tubular surface can

be specified by s and φ, we compute the mesh vertices by

discretizing the tubular surface. The mesh vertices are then

defined by a set of points on the tubular surface with two

additional points at both ends of the curve,

V = {S(si, φi),p(0),p(1) | i = 1, ..., Nd} (6)

where si, φi are discrete points for surface vertices.

The example of reconstructed surface mesh vertices V
from the BÂezier shape primitive are shown in Fig. 2. During

the optimization process, we adjust these mesh vertices by

optimizing the parameters Θstate and Θverts. And finally,

the adjusted vertices connections create the robot mesh M.

(a) (b) (c)

Fig. 3. The pre-processing of soft octopus arm images, with the observed
RGB image (left), the reference binary mask with center-line (middle) and
the predefined keypoints and the endpoint (in yellow, right).

C. Differentiable Rendering

To render the image for robot mesh M, we use the

PyTorch3D differentiable render [21] for silhouette render-

ing. We set up the silhouette renderer with a perspective

camera and a SoftSilhouetteShader which does not apply any

lighting and shading. The differentiable renderer applies the

rasterization algorithm which finds the mesh triangles that in-

tersect each pixel and weights the influence according to the

distance along the z-axis. Finally, the SoftSilhouetteShader

computes pixel values of the rendered silhouette image using

the sigmoid blending method [18].

D. Objective Loss Functions

To minimize the difference between the reconstructed sil-

houette image and the observed binary mask, the commonly

used mask loss is applied. The mask loss computes the sum

of the mean square error for every pixel,

Lmask =
H−1
∑

i=0

W−1
∑

j=0

(

S(i, j)−M
ref (i, j)

)2
. (7)

H and W is the image height and width, S is the rendered

silhouette image and M
ref is the reference binary mask.

The mask loss will have non-informative gradients when

there is no overlap (e.g. S(i, j) = 0 but M
ref (i, j) = 1).

Therefore we use an additional keypoint loss to guide the

optimization from local minima when the silhouettes do not

overlap. The keypoints loss is defined as:

Lkeypoint =

K
∑

i=1

∥π(pi)− x̂i∥2 (8)

where K is the number of keypoints, x̂i is the i-th 2D

keypoint extracted from center line of the reference mask

M
ref as shown in Fig. 3, and pi is the corresponding 3D

keypoint on the BÂezier curve. π(·) is the camera projection

operator. Finally, the shape reconstruction loss is defined as:

Lshape = λmaskLmask + λkeypointLkeypoint (9)

with λmask, λkeypoint as loss weights.

III. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Metrics

Tendon-driven Octopus Arm dataset. Our experimental

evaluations are conducted on a physical prototype of tendon-

driven octopus arm, visible in Fig. 1. It consists of a tapered



(a) (b)

Fig. 4. Reconstruction results for the Octopus Arm dataset, with (a) the reference RGB images and shape reconstruction results for different losses
are shown for 4 example frames that cover a large range of motion and (b) the reconstructed 3D robot shape of the picked frames and the entire robot
trajectory.

cylinder of Ecoflex 00-30 (Smooth-On, Inc., Macungie, PA,

USA) of length 200 mm, base and tip radius of 10 and 6 mm,

respectively. It contains four channels for tendon actuation.

The tendons are rigidly attached at the tip, and connected

to spools actuated by harmonic drive motors at the base.

The motors displace the tendons, leading to motions of the

octopus arm. We collected the images using the ZED camera

and the ground-truth robot shape is obtained with stereo

reconstruction. For evaluation, we compare the center line of

the reconstructed robot shape with the ground truth shape.

The 2D and 3D errors of the center line are computed using

the Euclidean distance of discrete points.

B. Shape Reconstruction for Soft Continuum Robot

1) Implementation details: The RGB images are pre-

processed to binary masks and the 2D center-line are ex-

tracted from the reference binary mask using the scikit-

image (https://scikit-image.org) package, which

implements the fast skeletonization method [22]. We arbi-

trary predefined 4 keypoints along the center-line for loss

computation, as shown in Fig. 3. For computing the mesh

vertices, s is discretized to 100 and θ is discretized to 40

number of evenly spaced points. For the loss function, we

set λmask = 1 and λkeypoint = 100. We initialize the control

points randomly but make sure the initialized mesh is within

TABLE I

2D AND 3D ERROR (MEAN e AND STANDARD DEVIATION σ) OF SHAPE

RECONSTRUCTION ON REAL OCTOPUS ARM DATASET.

Losses e2D (pixel) σ2D e3D σ3D

Mask 12.462 8.690 8.720 2.534
Mask + endpoint 3.898 2.216 7.299 3.900
Mask + 4 keypoints 3.276 0.785 6.915 2.096

the camera frustum. The optimization loop is run for 200

iterations with a learning rate of 0.2.

2) Evaluation on the Octopus Arm Dataset: We evaluate

our shape reconstruction method with different loss func-

tions described in Section II-D. For the keypoint loss, we

experimented with only using the endpoint and using all 4

keypoints. We report the averaged 2D and 3D center-line

error and the results are shown in Table I. We can see that

the error is dropped significantly by combining the mask

loss and keypoint loss with only the endpoint. Considering

more keypoints further improves our performance of shape

reconstruction as they provide more guidance for optimiza-

tion. The qualitative results are shown in the Fig. 4, where

we show the rendered silhouette images of the reconstructed

robot mesh (left) and, the reconstructed 3D robot shape, and

the robot trajectory (right).

IV. CONCLUSION

In this paper, we demonstrate the capability of reconstruc-

tion the soft’s shape directly from a camera, as shown in

Fig. 1. The method works via the technique of differentiable

rendering, and can be generalized to any geometrical shape

primitives. We show that several definitions for optimiza-

tion losses are useful to overcome the local minima when

applying differentiable rendering to the objective functions.

We evaluated our method on relatively unstructured environ-

ments of continuum robot showing its efficacy. Ultimately,

this work helps to enable robot shape reconstruction and

tracking without embedded sensors, with greater opportuni-

ties in useful dataset curation, behavioral cloning and visual

learning. For future work, we will incorporate the shape

reconstruction for close-loop robot manipulation tasks.
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