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Abstract— Vision-based control of autonomous vehicles
presents major challenges, particularly outside of well struc-
tured environments with clear road boundaries and lane mark-
ings. Learning control policies from human driving data offers
an appealing alternative to classical navigation pipelines: by
learning to directly associate observations with actions that
avoid obstacles and achieve navigational goals, it is possible to
circumvent many of the challenges associated with manually
engineering a driving system for unstructured or off-road
settings. However, integrating learning-based approaches into
robust high-performance control systems presents a major
challenge. In this paper, we describe a system for passenger-
scale autonomous navigation in off-road environments that
combines imitative models with low-level model-predictive con-
trol. Although the system learns to control the vehicle directly
through perception, it is designed to integrate together learning-
based components with constraints and trajectory optimization
so as to provide a complete navigational system. Our experi-
ments demonstrate the performance of the system in real-world
scenarios over complex off-road terrains, and characterize its
potential for improvement with the scaling of data collection
and interventions. For a video description, see our link here

I. INTRODUCTION

A large amount of research and development in building
large-scale off-road autonomy stacks has enabled implemen-
tations of off-road driving using a combination of environ-
ment mapping, path planning and model-based control [1],
[2], [3]. Such a “geometric” stack tends to be very reliable
by being conservative about its traversability estimates –
through acting overly reliant on modeling the 3D geometry
of the scene for path planning – and generally involves lots
of hand-engineering (fine-tuning) and heuristics. Imitation
learning (IL) [4], [5] is a powerful paradigm that can
enable the system to learn relevant cues directly from prior
experience and improve its performance as we gather more
data. However, learning-based systems can be unreliable in
the presence of out-of-distribution objects in the scene and
difficult to integrate with existing autonomy stacks. An ideal
autonomy solution would be able to leverage the ability of IL
to learn directly from data, while not giving up the reliable
conservativeness of a geometric stack.

In this work, we present RACER-L4P, the learning for
planning (L4P) method for autonomous off-road driving
that is enabled by data-driven learning from Deep Imitative
Models (DIM) [6]. We train an IL-based planner to infer a
2D navigation path in top-down coordinates (rather than the
conventionally used action predictions) and combine it with
a model-based controller. While the particular components
that we use to build RACER-L4P draw on prior work [6],

Fig. 1: Left: full vehicle with sensor suite, which consists of a high-
resolution stereo camera and depth sensor. Right: RGB and depth
images as viewed from the onboard camera during data collection
and real-time inference.

[7], [8], our system serves as a proof-of-concept to enable
passenger-sized autonomous driving over off-road terrain
without any manual perceptual feature or cost-function en-
gineering required as well as a novel instantiation of MPPI
and IL. Our experiments demonstrate that RACER-L4P can
successfully infer and follow acceptable paths in off-road
unstructured environments. Furthermore, our system contin-
ually learns from incoming navigational data via collision
intervention collection, creating a stack that is constantly
improving itself in an iteration-based manner as shown in
our performance analysis experiments.

II. RELATED WORK

A. Current Off-Road Autonomy Stacks

Driving in off-road environments requires the vehicle
to assess the traversability of the terrain. This can be
achieved using geometry-based or appearance-based methods
as summarized in Papadakis [9]. Geometry-based methods
involve constructing a terrain map [10], [11] from depth
measurements obtained via sensors such as LiDAR and
stereo cameras. This terrain map is used to generate a
traversability cost by performing stability analysis, using
features like surface normals and the maximum or minimum
height of the terrain, which can be used by motion plan-
ning and control algorithms to plan vehicle’s actions [12],
[13], [14]. Appearance-based methods incorporate higher-
level costs through concepts such as semantic segmentation,
object detection, and instance segmentation [15], [16], [17],
where machine learning techniques are widely applied today.
In contrast to these approaches, we describe a system that
utilizes imitation learning to directly learn perception from

https://youtu.be/XMUKSr3z0fM


Fig. 2: Framework overview of our system. The system takes LiDAR-inertial odometry for past-trajectory input and RGB & depth images
as visual inputs. It outputs the planned short-range path (≤15m) using the DIM policy. The MPPI then smooths the path and generates
position, velocity, throttle, and steer control commands to be applied to the low-level PID controller.

raw observations, bypassing an explicit representation of
traversability across a map. We integrate this imitation learn-
ing process into a more conventional planning and control
pipeline that still allows us to impose constraints and employ
state-of-the-art tracking methods. This hybrid method is also
robust as it scales with additional data collection whereas
purely geometry-based methods cannot easily learn from
incoming data automatically.

B. Imitation Learning for Navigation and Driving

Imitation Learning (IL) methods provide a simple way
to implicitly model traversability by learning from prior
experience. Expert demonstrations can provide a simple
way to learn complex relationships between scene features
and traversability. For navigating between points, goal-
conditioned IL [18] has been used for control in many
settings but often does not generalize well causing poor
performance when out of distribution. Using IL with external
goal direction has been shown to work well in simulation
[6] and can be directly integrated with geometric infor-
mation to improve out-of-distribution performance for off-
road navigation [7]. But these algorithms have not been
demonstrated on large vehicles in the real world. In [19],
authors utilized an inverse reinforcement learning (IRL)
framework for predicting traversability, which learns from
human demonstrations, but was still required to repeatedly
solve the MDP during inference which is not suitable for
longer range of navigation and high-speed of driving.

Many similar on-road end-to-end methods for navigation
have been explored for mapping raw input directly to steering
angles [20], [21], [22], but these inherently differ by their
problem formulation as they are on-road. Navigation on-
road affords the model a largely unimodal distribution of
potential paths and furthermore is heavily guided by road
segmentation and line markers. Some attempts at using
learning for end-to-end driving have been made [23], [24]
but these methods do not use any explicit goal-direction,
Instead, they do supervised behavior cloning (BC) to predict

a most-likely target steer. More importantly, these methods
only learn to implicitly drive fast while dodging obstacles,
not navigate from point A to B. Our proposed method, on
the other hand, works at the trajectory-level which enables
heuristic-based scoring to follow high-level goals.

More explicit off-road traversability estimation methods
that rely on learning exist and can classify full scenes
[25] or semantically segment traversable areas [26], [1], but
both require extensive annotation which can be hard to get
for diverse, unstructured scenes in off-road environments.
We propose a method for driving by implicitly learning
traversability using unlabeled data.

III. SUMMARY OF THE RACER-L4P SYSTEM

A. Hardware Setup and Sensor Suite
We instantiate our RACER-L4P system on a Polaris

MRZR-X platform (see Fig. 1), which offers the impressive
capability to drive on a variety of challenging off-road
terrains. The vehicle is equipped with a baseline sensor
package, computing resources, and autonomy stack. The
sensor package includes an inertial measurement unit (IMU),
radar arrays, stereo camera pairs front and backward, and
four lidars. The computing resources are comprised of
networked GPUs populated with a basic “drive by wire”
vehicle management system to execute driving commands
(e.g., accelerate, break, turn). Our method uses the color and
depth images from the RGB-D sensor package at the front
of the vehicle.

B. Software Stack
The RACER-L4P software is built based on the NeBula

system [8]. In this study, we are focusing on short range
planning to achieve resilient navigation at high speeds in
off-road settings. A traditional planner requires pre-built/fine-
tuned prior information, such as occupancy information,
traversability analysis, etc. As opposed to a traditional plan-
ner, our architecture requires only a short pose history of the
vehicle, as well as an RGB-D image. Fig. 2 illustrates our
software architecture.



Fig. 3: Example intervention scenes used for training. The deployed imitative policy often makes wrong predictions (plans shown in red),
requiring a human expert to intervene and provide corrective behavior (shown in cyan). We use this corrective behavior as training data
to continually improve our system.

IV. LEARNING OFF-ROAD NAVIGATION
WITH IMITATIVE MODELS

Our off-road driving software stack consists of two sub-
systems: imitation-learning based spatial planning and con-
trol tracking. The purpose of the former is a data-driven
method to infer the highest-quality path given the perceptual
data, and the latter to infer the controls that track this
path. For spatial planning, we adopt deep imitative models
[6], which learn conditional density estimators of expert-
like spatial trajectories, and use them to predict time-profiled
trajectories at 10Hz for 4 seconds (i.e., each trajectory is 40
2D points). The planned trajectories are transmitted to the
low-level controller to infer control actions. Specifically, we
employ a Model Predictive Path Integral Controller (MPPI)
[27] to generate command signals which can follow the
trajectory precisely for our control sub-system.

A. Tracking with Model-Predictive Path Integral Control

We follow the MPPI framework to determine the controls
to send to the robotic system when given a path to follow.
MPPI works by optimizing a distribution that can be sampled
for high-quality trajectories. After sampling a trajectory from
the current distribution, it rolls out the dynamics with a
predictive model. The control distribution desired is one
which minimizes costs of control, state-dependent custom
costs, and any constraints that the user may specify. To get
the best distribution, we can treat the optimization problem
as one of a KL-divergence minimization between a desired
optimal distribution and the current trajectory distribution.
This is done via iteratively updating the means of the current
distribution with the rolled out dynamics.

B. Spatial Planning with Deep Imitation Learning

Geometric-based planning is a well-studied area in au-
tonomous robotics. In general, geometric pipelines use
costmaps built through traversability assessment using fea-
tures based on the conventional algorithms such as sur-
face fitting [28] and height based cost map generation [2].
However, rule-based algorithms like these are significantly
affected by the quality of the parameters and often require
significant computational resources for high-frequency colli-
sion checking and feature processing. More importantly, in
rapidly changing environments, such as in off-road terrain,
it is hard to perform robustly with static (no human-in-the-
loop) geometric pipelines.

We now describe our proposed model’s formulation and
setup: let ot = (x≤t, it) denote the sensor information
available to the vehicle, where xt ∈ R3 is the vehicle’s
odometry position, and it ∈ [0, 1]H×W×4 is an RGB-D
image. Let τ ∈ RH denote a trajectory of potential future
positions: τ .

= xt+1:t+H , and τi denote xt+i.
Our goal is to learn a cost-function for planning, Clearned.

We use this function to select the best τ , τ∗. This trajectory is
then given to the MPPI controller for tracking. Our receding-
horizon path planner uses Eq. (1):

τ∗ = argminτClearned(τ, o≤t) (1)

C. Learned Imitative Cost

We design this learned cost to be a conditional probability
density function of possible future trajectories approximated
by a neural architecture. We learn this function, q(τ |o≤t), by
maximum likelihood estimation, following [6]. Once trained,
we use the negative log-likelihood of a trajectory in the data-
distribution as the learned cost function: Clearned(τ, o≤t) =
− log q(τ |o≤t). While [6] uses gradient-based planning to
approximately identify τ∗, we found using a pre-generated
library of paths to be more computationally efficient. We
generate this library from the centroids of k-means on the
training trajectories (we used K = 200).

D. Model Architecture

We design q(τ |o≤t) to be a conditional autoregressive
normalizing flow, which is a universal approximator (it can
theoretically model any density function) [29]. A normalizing
flow enables exact inference of an arbitrary point in event
space, which allows us to evaluate the planning criterion
exactly for any candidate trajectory. The model uses a learned
function, fenc to encode it and combines it with xt via
another learned function, genc. This creates a contextual
vector, z ∈ Rd where d represents the contextual vector di-
mensionality. More precisely, we have z = genc(fenc(it), xt)
where fenc is MobileNet-v2 [30] and genc is a Multilayer
Perceptron. Given z and a base distribution sample x ∈ RH ,
we can generate a sample in the data-distribution, τ =
F (x; o≤t), τ ∈ RH . Sampling from the model enables one
to inspect the model’s predictions for expert-like trajectories,
although it is not used to plan (the model’s probability
density function is used to plan).



E. Distribution Shift

A well-known issue with offline imitation learning is the
compounding errors problem [31]. More specifically, when
an imitative model (or policy) that scores well on offline
metrics is deployed, the visitation distribution can generally
diverge from the training distribution – the deployment of
the model violates a key supervised learning assumption of
IID data. As this occurs, errors may begin building up and
cause catastrophic failure due to poor performance of the
function approximator when out of distribution. We address
this problem by employing DAgger to improve deployment
performance [31]: after initial training, we deployed the
model and collected corrective maneuvers after interventions,
then we combined the original training dataset with the
interventions captured during deployment and retrained the
model for redeployment. This DAgger intervention loop was
then repeated multiple times. Example visualizations of this
process are shown in Figure 3.

V. EVALUATION ON A PASSENGER-SIZED OFF-ROAD
VEHICLE

Our main metrics are based on the interventions by a hu-
man safety driver. When the deployed system starts behaving
unsafely (e.g. may soon collide with an obstacle), the human
safety driver intervenes to correct the vehicle. We recorded
these interventions both as a measure of system performance
and to further improve the system. We compute metrics based
on the interventions per unit distance and interventions per
unit time. We used 4 hours of driving data with 1 hour for
evaluation offline.

A. Behavior Cloning Baseline

Furthermore, instead of modeling q(τ |o≤t) as a condi-
tional autoregressive normalizing flow, we also compare
to modeling it as a conditional Gaussian distribution in
trajectory space, which we refer to as the Behavior Cloning
(“BC”) model. A typical BC approach minimizes L2 error
with a deterministic prediction, which is equivalent to fitting
a Gaussian distribution and always outputting its mean. We
expect a Gaussian distribution not to be able to realize the
true multi-mode expert trajectory distribution, due to the high
degrees of uncertainty generally present in driving, let alone
off-road driving.

B. Experimental Results

We first study the performance of on-policy driving across
model architecture with one iteration of intervention data.
Specifically, we aim to analyze how much of an empirical
performance boost we can get by using a conditional flow-
based architecture instead of a BC model and how this scales
with the inclusion of intervention data. Our results are shown
in Table I and show how the flow model performs better
after an iteration. As hypothesized, the obstacle rich nature of
the trail motivates the usage of a multiple-mode distribution
representation, which only the flow model can approximate.

We also sweep across data modality by running an ablation
study across image data type. Our goal is to determine

Model Interventions
Minute ↓ Interventions

100m ↓

BC, post-intervention data inclusion 2.479 2.833
Flow, post-intervention data inclusion 2.004 2.197

TABLE I: Compared to the BC model, it can be seen that the flow
model shows about 1.2 times higher performance. This motivates
the usage of the Flow for its better performance across 1 data
aggregation iteration.

if, with the Flow-based architecture, the depth map is a
significant component of the system setup. We do this by
running identical experiments with RGB data and RGB-D
data and show our results in Table II. Evidently, the inclusion
of depth before any iterations seems to help performance.

Model Interventions
Minute ↓ Interventions

100m ↓

RGB-D Flow, pre-intervention data inclusion 5.179 5.561
RGB Flow, pre-intervention data inclusion 6.5 6.97

TABLE II: Online metrics with and without a concatenated depth
map. In the flow model, utilizing a depth map is crucial, and informs
how we should run our later dagger iterations.

For our final experiment, we use an RGB-D policy using
a conditional-flow estimator as an imitative path-planner
integrated with MPPI. We collect 3 DAgger iterations and
show our results in Table III. As expected, the final iteration
model showed improved performance by about 3 times.

Model Iteration Interventions
Minute ↓ Interventions

100m ↓

Iteration 0 5.179 5.561
Iteration 1 2.004 2.197
Iteration 2 1.740 1.895
Iteration 3 1.63 1.5

TABLE III: Final DAgger iteration results are shown above for
every iteration. After an iteration, the model was retrained with
the interventions and re-evaluated. Inclusion of intervention data
improves the model performance significantly and is scalable.

VI. DISCUSSION

In this paper, we presented a system for learning-based
visual navigation in off-road environments for passenger-
sized vehicles. Our system combines an imitative model with
trajectory optimization and model-predictive control to drive
a vehicle through off-road, desert-like environments, and the
design enables potential incorporation of other path-based
costs, whether learning-based or hand-designed, as might
come from a standard geometric pipeline.
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