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Abstract— Despite the remarkable accomplishments of re-
inforcement learning (RL) in learning complex skills solely
through interactions with the environment, its prerequisite of
easy resets to the initial state at the end of the episode poses a
challenge for autonomous learning of embodied agents. Hence,
there has been a growing interest in developing autonomous RL
(ARL) approaches that are capable of learning from continual,
non-episodic interactions. However, existing ARL methodologies
are constrained by their reliance on prior data, rendering
them ineffective in scenarios where interactions pertinent to the
task are infrequent. In contrast, our proposition introduces a
demonstration-free ARL algorithm based on an implicit and
bidirectional curriculum. Our method, employing a conditionally
activated auxiliary agent and a bidirectional goal curriculum,
outperforms prior methods, even those that make use of
demonstrations.

I. INTRODUCTION

Reinforcement learning (RL) has enabled interactive agents
to learn complex skills across diverse domains without
significant prior knowledge [1], [2], [3], [4]. However, prior
methods assume an episodic setting where each trial begins
from a state drawn from a fixed initial state distribution,
and they are not designed to learn autonomously in the
real world which involves ongoing, uninterrupted interaction.
This challenge is particularly prominent in robotics. In most
cases, addressing this challenge involves time-consuming and
expensive interventions like human supervision, predefined
scripted policies, and specialized experimental setups to reset
the environment after each attempt [5], [6], [7]. To overcome
these obstacles, it’s crucial to develop RL agents that can
learn autonomously with minimal external interventions.

Previous works involving RL agents in real-world scenarios
primarily include a mechanism to handle resets. Reset
mechanisms, which aim to minimize external interventions by
requesting resets when necessary [8], [9] are only effective
if manual resets can be easily executed. However, within the
framework of non-episodic autonomous RL (ARL) [10], the
option of manual resets upon request is absent and the agent
has to learn continuously without any external interventions.
To overcome the challenge of the non-episodic setting, many
previous algorithms have depended on some form of pre-
existing data with varying degrees of privilege, ranging from
expert or sub-optimal trajectories [11], [12] to examples of
states of interest [13]. However, the true essence of autonomy
demands an agent’s ability to learn entirely from scratch,
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Fig. 1. Our method proposes a bidirectional curriculum for both forward

and backward episodes. The auxiliary agent is no longer activated after the
agent of interest becomes capable.

devoid of external interventions or pre-existing data. To that
end, we propose an ARL algorithm capable of training a goal-
conditioned RL policy without the need for demonstrations,
specifically designed for the non-episodic setting.

The ineffectiveness of existing RL algorithms in non-
episodic scenarios has been widely acknowledged [14],
primarily due to the challenge of insufficient practice op-
portunities for the evaluation task. A common framework
for extending conventional RL to the non-episodic setting
is to divide one continual interaction into multiple episodes.
Typically, a forward episode pursues the original objective,
while a subsequent backward episode targets an auxiliary
objective, which serves as a foundation for the forward
episode through a favorable initialization. While a common
choice for this auxiliary objective is to return to the initial
state distribution [8], this isn’t always optimal, as it wastes
valuable transitions on returning back to the initial state.

In this work, we consider an auxiliary agent that is
conditionally activated to return to the initial state. This
stems from our observation that providing a strong anchor
is crucial, particularly when dealing with tasks that involve
infrequent interactions that are unlikely to occur by chance in
a non-episodic context. In our proposed approach, the agent
of interest initially relies on the auxiliary agent but gradually
reduces this dependence as training progresses through an
implicit curriculum. As the agent of interest gains proficiency,
consecutive forward episodes can be conducted without the
auxiliary agent’s involvement, enabling more transitions to be
dedicated to training the agent of interest, leading to enhanced
sample efficiency. While the auxiliary agent serves as a strong
initial support, additional guidance is required for effectively
training the agent of interest. Since the agent of interest must
learn without prior data, we generate curriculum goals that



do not rely on demonstrations or predetermined curricula.
Specifically, we introduce a bidirectional goal curriculum
approach that concurrently selects suitable goals for both
episodes.

Our primary contribution is in introducing a demonstration-
free ARL algorithm via implicit and bi-directional curriculum.
Evaluations demonstrate the superior performance of our
approach compared to existing methods. Additional analyses
indicate that both the suggested implicit curriculum (utilizing
the auxiliary agent) and the explicit curriculum (bidirectional
goal curriculum) are well-formed and crucial for achieving
successful learning in the demonstration-free, non-episodic
scenario.

II. PRELIMINARY

A. Autonomous Reinforcement Learning

We assume an ergodic environment for the demonstration-
free, non-episodic setting, similar to many previous works on
autonomous RL (ARL). We consider the Markov decision pro-
cess (MDP) M = (S,G, A, P,r,~, po), where S denotes the
state space, G the goal space, A the action space, P(s'|s, a)
the transition dynamics, 7 the discount factor, and pg the
initial state distribution of the evaluation setting. The learning
algorithm A is defined as A : {s;,a;,1j, 5j+1};:0 —
{a¢,m(:|s)}, which maps the collected data until time ¢
to an action a; to be applied during the non-episodic training
and its current best guess of the optimal evaluation policy
me(+]$).

Typical implementations of RL algorithms (episodic) in-
volve thousands or millions of sampling so ~ po(s), which
require manual resets at the end of every episode. However,
under the ARL framework (non-episodic), the initial state
S0 ~ po(s) is sampled only once at the beginning and the
agent interacts with the environment through the actions a;
determined by the algorithm A until ¢ — oc.

ARL defines the Deployed Policy Evaluation metric, which
measures how fast the policy m; improves in terms of the
evaluation performance for a given task:

D(8) =3[ () — 7 (m0)] M

t=0

where J(m) = E, rp [Doreo V7 (st.at)], and 7* is the
optimal policy. The goal of algorithm A is to minimize D(A)
by learning as fast as possible.

B. Surrogate Objective for Curriculum RL

We replace the original RL objective with a surrogate
objective to be utilized for curriculum generation in Section
and describe it in detail. Let 7 be the joint distribution of
some initial state sy and goal g. Then, the original objective
max, J(7) can be represented as,

max V7™ (T) :=

™ (s0,9)~T

V7™ (s0,9)] 2

where V7 (sg, g) is the goal-conditioned value function.

Our approach relies on the following generalizability
condition [15], [16], [17], [18] that is characterized by the
Lipschitz continuity-based assumption:

V(T = V(DI <L-D(T,T) ©)

where L is the Lipschitz constant and D(7,7’) =
inf,crer 7 (Euld((s0,9), (50,9"))]) is the Wasserstein dis-
tance based on the distance metric d(-,-). T'(7,7") denotes
the set of all possible transport plans .

Under Eq (3), optimizing Eq can be relaxed into the
following lower-bound maximization,

max [V7(T) = L+ D (T, T")] @

where (s§, g*) ~ T* is the joint distribution of the target ini-
tial state s and target goal state g*. Intuitively, it maximizes
the policy performance and closeness to 7*, which results
in a task curriculum with increasing difficulty.

III. METHOD
A. Non-Episodic RL with an Auxiliary Agent

During non-episodic training, we alternate between the
two agents such that the auxiliary agent guides the forward
agent only when necessary. Specifically, we conditionally
activate the auxiliary agent when the forward agent has failed
at the given goal state such that the auxiliary agent gradually
disappears as the forward agent improves which results in
better sample efficiency. Let us consider the hypothetical
setting where the forward agent is fully capable and the
auxiliary agent does not intervene at all. Under this setting,
the forward agent repeatedly attempts its target goal states
Sg+ ~ prar(s) without resets. Thus, the agent is no longer
restricted by po(s) unlike in episodic settings and we can
consider a better initial state distribution by appropriately
designing pqr ().

Interestingly, a previous work [19] provides theoretical
grounds that po(s) close to p*(s) enables efficient training
in RL, where p*(s) denotes the state marginal distribution
of the optimal policy 7*. If we set p;q,-($) to be a subset of
p*(s) from the optimal policy that achieves the evaluation
goal geyq1, We can approximately satisfy this ideal initial state
distribution. Note that the target goal s,- achieved by the
forward agent policy 7y from the previous rollout becomes
the initial state for the next rollout.

In practice, it suffices for p:q,(s), which is only used
for bidirectional curriculum and not for RL, to contain
a minimal number of key points that roughly outline the
task to be adequate for the goal curriculum generation.
This is because the curriculum goals effectively “fill in the
blanks” by proposing past states from the replay buffer that
are close to piqr(s). Typically, specifying piq,-(s) requires
only a handful of samples (~ 10) from pg(s) and geyal
combined to approximate p*(s). For some tasks, it suffices
to specify piqr(s) with a single example from pg(s) and
Jeval €ach. Unlike previous ARL methods, we do not require
demonstrations with thousands of transitions or access to the
expert policy.
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Until now, we have considered the setting where 77 has
converged and is fully capable. However, most of the rollouts
by 7, before convergence will lead the agent to an arbitrary
state rather than sg4«, leading to highly-varying initial states
for the next rollout which results in unstable learning. For this
reason, we need an auxiliary agent that provides an anchor
and guides the forward agent. More precisely, the auxiliary
agent tries to bring the forward agent back to the set of
target initial states s§ ~ po tqr(s). Even though pg 4o, (s) can
be an arbitrary set of states that are useful for the repeated
practice of the forward agent, we set po ar(s) to include
the environmental initial state distribution pg(s). This is
because providing a strong anchor is crucial in practice and
the evaluation will be performed from pg(s).

B. Bidirectional Curriculum Generation

While our non-episodic training process involving an
auxiliary agent, po tor(s), and pyqr(s) approximately satisfies
the ideal initial state condition, it might not be sufficient
for autonomous training in environments where target states
are difficult to be achieved from scratch. Thus, we need to
find intermediate goals that can guide the learning of the
agent. To find such goals without relying on demonstrations,
the candidates must be obtained from past trajectories with
highly varying initial states due to non-episodic training.
We propose a bidirectional goal curriculum based on the
surrogate problem (Eq (@)) for both forward and auxiliary
agents without relying on demonstrations in the non-episodic
setting.

For autonomous curriculum generation, we sample the
candidates for 7 from past states in the replay buffer B.
To prevent a degenerate solution in the curriculum selection
process, a diversity constraint is incorporated such that for
every trajectory 7 = (so, ..., St;,,,,) € B, at most one state
can be chosen for 7. Then, Eq is transformed as follows,

max [V7/(T) = L-D(T.T")]
s.t. Z]l [(s0,07(s¢)) €TI <1, so,se€T,VTEDB
t
Q)]

where ¢(-) is a mapping function that abstracts the state space
into the goal space. To solve Eq (5, we iteratively update 7~
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and policies ¢, m, until 7 achieves a desirable evaluation
performance. The policy optimization is simply achieved by
applying off-the-shelf RL algorithms such as SAC [20]. The
optimization of 7 is defined by the Wasserstein Barycenter
problem augmented with a value bias term.

Inspired by [18], we enforce 7 and 7" to be a set
of K particles (|7] = |T*| = K) where (so,9)" ~ T,
and (s, ¢(sg+))" ~ T*, rather than parameterizing their
distribution. Then, to address the Wasserstein Barycenter
problem (Eq @) in_the combinatorial setting, we assign
candidates for 7 to 7* via the following bipartite matching
problem:

min w( (s, 8q:)", 7" 6
Ti={si Vt}eB Z (( 09 ) ) ©

i
.
58r50+ )

where w(+,-) becomes

w((s,50°)" 7) = e 0alss) = dalsh)

_ . 1 . N D
i or(s5) = o6, ~ 7V sher (6D )

when we define the distance metric d((s, g), (s’,g’)) from

Eq () as ¢|[¢a(s) = da(s)]ly + lg = ¢'ll (¢ is a hyperpa-
rameter). With the costs w defined according to Eq (7), we
can construct a bipartite graph G({V,, Vp},E). Let V,, be
the set of nodes representing candidates for 7" and V), be the
set of nodes for 7*. The weights of the edges are defined as
E(vq,vp) = —w(vg, vp), where v, € V, and v, € V),

To solve the bipartite matching problem, the Minimum
Cost Maximum Flow algorithm is utilized to find K edges
with the minimum combined cost of connecting V, and
Vy, [21]. The resulting K forward curriculum goals will be
proposed towards a region of the state space considered to
be close to sg« ~ piar(s) and within the capability of the
forward agent as indicated by the value bias term. Similarly,
the K auxiliary curriculum goals will be proposed towards a
region considered to be close to s§ ~ po,tar(S).

IV. EXPERIMENT

We include three sparse reward environments to evaluate
our method. Two environments — Tabletop Manipulation,
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Fig. 3. Visualization of the curriculum goals and their average normalized
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dots indicate the curriculum goals for the forward and auxiliary agents,
respectively.

Sawyer Door — are from established ARL benchmark,
EARL [10], and the other environment — Fetch Pick&Place
environment — is a modified version of existing MuJoCo-
based OpenAl Gym environments [22], [23] for the ARL
setting.

We compare with other previous methods designed for the
ARL framework, which can be summarized as follows:

MEDAL [11] — a backward agent that minimizes the
distance between its state marginal distribution and the expert
state distribution.

VaPRL [24] — value-based subgoal curricula towards the
initial state distribution po(s) during the backward episode;
amenable to demonstration-free setting, but reports on the
version with demonstration data.

oracle RL — a standard RL baseline such as SAC [20]
in an episodic setting with goal relabeling technique [25]
common for sparse reward environments.

A. Results and Analyses

We follow the evaluation setting similar to the EARL
benchmark [10]. Specifically, the agent interacts with the
environment after initially being spawned at sy ~ po(s)
and occasionally being reset to sy ~ po(s) after hundreds
of thousands of steps. Since we focus on minimizing the
deployed policy evaluation metric, D(A), we report on J(7;)
in 10k training step intervals by averaging returns from the
policy over multiple evaluation episodes.

a) Evaluation results.: As shown in Figure [2] the
proposed method achieves state-of-the-art performance against
other baselines, without requiring any demonstration data and

even achieving comparable success rates to the oracle RL.

Although some prior works such as VaPRL and MEDAL
utilize nearly expert-level demonstration data, they have
difficulty in environments where the task-relevant interactions
are very sparse in the non-episodic setting or the evaluation
goals geqyq; are uniformly spread over some region rather
than a few points such as Fetch environments. For a fair
comparison with our method, we also evaluated a version
of VaPRL without demonstrations; it performed noticeably
worse than the original VaPRL.
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Fig. 4. Episode ratio of the auxiliary agent and evaluation success rate.

To validate whether the intervention of the auxiliary agent
vanishes as training proceeds, we plot the episode ratio of
the auxiliary agent within the latest 1k episodes. As shown
in Figure [ the auxiliary agent does not intervene when the
forward agent is fully trained.

b) Bidirectional curriculum.: To validate whether the
bidirectional curriculum goals are properly interpolated and
eventually converge to the desired target distributions, we
evaluate the progress of the curriculum goals qualitatively and
quantitatively. To do so, we visualize the forward and auxiliary
curriculum goals and plot the corresponding normalized
distance averaged over target goals assigned by bipartite
matching (Section [[II-B).

The plots in Figure [3| demonstrate that the average distance
to goals consistently decreases as training proceeds, which
indicates that the curriculum goals for both forward and
auxiliary agents have properly converged to their respective
target states. The visualizations in Figure [3] provide further
validation. Specifically, the forward curriculum goals gradu-
ally converge toward the p,(s), which encompasses a region
in the air and on the table for the Fetch Pick & Place. The
auxiliary curriculum goals also converge to the target goal
states po ¢qr (), initially. However, there is a gradual shift
of the auxiliary curriculum goals towards p*(s) after initial
convergence which is reflected in the slight increase in average
distance to goals for the backward episode (pg tqr(5)). This
is because the candidates for the backward curriculum goals,
which eventually become the initial states for the forward
agent, are obtained from both pg 14, (s) and pia,(s) C p*(s)
when the forward agent remains at intermediate proficiency
(~50%) for prolonged timesteps during training.

V. CONCLUSION

In this work, we considered a non-episodic RL setting
where the agent should learn how to perform the given task
autonomously without any external interventions such as
manual resets and prior data. We proposed a demonstration-
free autonomous learning algorithm based on implicit and
bidirectional curriculum generation. We have shown that
our method outperforms previous methods, both in terms of
sample efficiency and final average success rate. However,
our method still requires minimal human input for specifying
sparse rewards. We aim to further develop our approach
by transitioning to a reward-free setting to enable more
autonomous training of the agent.
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